33,676 research outputs found
Bone mechanical properties in healthy and diseased states
The mechanical properties of bone are fundamental to the ability of our skeletons to support movement and to provide protection to our vital organs. As such, deterioration in mechanical behavior with aging and/or diseases such as osteoporosis and diabetes can have profound consequences for individuals’ quality of life. This article reviews current knowledge of the basic mechanical behavior of bone at length scales ranging from hundreds of nanometers to tens of centimeters. We present the basic tenets of bone mechanics and connect them to some of the arcs of research that have brought the field to recent advances. We also discuss cortical bone, trabecular bone, and whole bones, as well as multiple aspects of material behavior, including elasticity, yield, fracture, fatigue, and damage. We describe the roles of bone quantity (e.g., density, porosity) and bone quality (e.g., cross-linking, protein composition), along with several avenues of future research.Author manuscrip
The frequency of muscle protein polymorphism in Menidia menidia (Atherinidae) along the Atlantic coast
(PDF has 6 pages.
Recommended from our members
Identification of Trace Organic Components in the CR Chondrites by 4D TOFMS
This paper reports preliminary results of a 4D TOFMS study of CR chondrite organic material, highlighting the low-level organic species that may further reveal the complexity of parent body modification of interstellar precursors
Spatial entanglement of paired photons generated in cold atomic ensembles
Cold atomic ensembles can mediate the generation of entanglement between
pairs of photons. Photons with specific directions of propagation are detected,
and the entanglement can reside in any of the degrees of freedom that describe
the whole quantum state of the photons: polarization, spatial shape or
frequency. We show that the direction of propagation of the generated photons
determines the spatial quantum state of the photons and therefore, the amount
of entanglement generated. When photons generated in different directions are
combined, this spatial distinguishing information can degrade the quantum
purity of the polarization or frequency entanglement.Comment: 5 pages, 4 figures. Submitted to Phys. Rev. A.; one figure (Fig. 3)
was added, typos and labels in figure 2 were correcte
Molecular and morphological characterization of Echinococcus granulosus of human and animal origin in Iran
Iran is an important endemic focus of cystic hydatid disease (CHD) where several species of intermediate host are commonly infected with Echinococcus granulosus. Isolates of E. granulosus were collected from humans and other animals from different geographical areas of Iran and characterized using both DNA (PCR-RFLP of ITS1) and morphological criteria (metacestode rostellar hook dimensions). The sheep and camel strains/genotypes were shown to occur in Iran. The sheep strain was shown to be the most common genotype of E. granulosus affecting sheep, cattle, goats and occasionally camels. The majority of camels were infected with the camel genotype as were 3 of 33 human cases. This is the first time that cases of CHD in humans have been identified in an area where a transmission cycle for the camel genotype exists. In addition, the camel genotype was found to cause infection in both sheep and cattle. Results also demonstrated that both sheep and camel strains can be readily differentiated on the basis of hook morphology alone
Microlensing of the Lensed Quasar SDSS0924+0219
We analyze V, I and H band HST images and two seasons of R-band monitoring
data for the gravitationally lensed quasar SDSS0924+0219. We clearly see that
image D is a point-source image of the quasar at the center of its host galaxy.
We can easily track the host galaxy of the quasar close to image D because
microlensing has provided a natural coronograph that suppresses the flux of the
quasar image by roughly an order of magnitude. We observe low amplitude,
uncorrelated variability between the four quasar images due to microlensing,
but no correlated variations that could be used to measure a time delay. Monte
Carlo models of the microlensing variability provide estimates of the mean
stellar mass in the lens galaxy (0.02 Msun < M < 1.0 Msun), the accretion disk
size (the disk temperature is 5 x 10^4 K at 3.0 x 10^14 cm < rs < 1.4 x 10^15
cm), and the black hole mass (2.0 x 10^7 Msun < MBH \eta_{0.1}^{-1/2}
(L/LE)^{1/2} < 3.3 x 10^8 Msun), all at 68% confidence. The black hole mass
estimate based on microlensing is consistent with an estimate of MBH = 7.3 +-
2.4 x 10^7 Msun from the MgII emission line width. If we extrapolate the
best-fitting light curve models into the future, we expect the the flux of
images A and B to remain relatively stable and images C and D to brighten. In
particular, we estimate that image D has a roughly 12% probability of
brightening by a factor of two during the next year and a 45% probability of
brightening by an order of magnitude over the next decade.Comment: v.2 incorporates referee's comments and corrects two errors in the
original manuscript. 28 pages, 10 figures, published in Ap
The Spatial Structure of An Accretion Disk
Based on the microlensing variability of the two-image gravitational lens
HE1104-1805 observed between 0.4 and 8 microns, we have measured the size and
wavelength-dependent structure of the quasar accretion disk. Modeled as a power
law in temperature, T proportional to R^-beta, we measure a B-band (0.13
microns in the rest frame) half-light radius of R_{1/2,B} = 6.7 (+6.2 -3.2) x
10^15 cm (68% CL) and a logarithmic slope of beta=0.61 (+0.21 -0.17) for our
standard model with a logarithmic prior on the disk size. Both the scale and
the slope are consistent with simple thin disk models where beta=3/4 and
R_{1/2,B} = 5.9 x 10^15 cm for a Shakura-Sunyaev disk radiating at the
Eddington limit with 10% efficiency. The observed fluxes favor a slightly
shallower slope, beta=0.55 (+0.03 -0.02), and a significantly smaller size for
beta=3/4.Comment: 5 pages, 4 figures, submitted to Ap
The relevance of the evolution of experimental studies for the interpretation and evaluation of some trace physical evidence
In order for trace evidence to have a high evidential value, experimental studies which mimic the forensic reality are of fundamental importance. Such primary level experimentation is crucial to establish a coherent body of theory concerning the generation, transfer and persistence of different forms of trace physical evidence. We contend that the forensic context, at whatever scale, will be specific to each individual forensic case and this context in which a crime takes place will influence the properties of trace evidence. it will, therefore, be necessary in many forensic cases to undertake secondary level experimental studies that incorporate specific variables pertinent to a particular case and supplement the established theory presented in the published literature. Such studies enable a better understanding of the specific forensic context and thus allow More accurate collection, analysis and interpretation of the trace physical evidence to be achieved. This paper presents two cases where the findings of secondary level experimental studies undertaken to address specific issues particular to two forensic investigations proved to be important. Specific pre-, syn- and post-forensic event factors were incorporated into the experimental design and proved to be invaluable in the recovery, analysis and in achieving accurate interpretations of both soil evidence from footwear and glass trace evidence from a broken window.These Studies demonstrate that a fuller understanding of the specific context within which trace physical evidence is generated and subsequently collected, as well as an understanding of the behaviour of certain forms of trace physical evidence under specific conditions, can add evidentiary weight to the analysis and interpretation of that evidence and thus help a court with greater certainty where resources (time and cost) permit
- …
