193 research outputs found
Nuclear PDFs from neutrino deep inelastic scattering
We study nuclear effects in charged current deep inelastic neutrino-iron
scattering in the frame-work of a chi^2 analysis of parton distribution
functions. We extract a set of iron PDFs and show that under reasonable
assumptions it is possible to constrain the valence, light sea and strange
quark distributions. Our iron PDFs are used to compute x_{Bj}-dependent and
Q^2-dependent nuclear correction factors for iron structure functions which are
required in global analyses of free nucleon PDFs. We compare our results with
nuclear correction factors from neutrino-nucleus scattering models and
correction factors for charged lepton-iron scattering. We find that, except for
very high x_{Bj}, our correction factors differ in both shape and magnitude
from the correction factors of the models and charged-lepton scattering.Comment: 25 pages, 10 figures; minor updates to match published versio
The impact of new neutrino DIS and Drell-Yan data on large-x parton distributions
New data sets have recently become available for neutrino and antineutrino
deep inelastic scattering on nuclear targets and for inclusive dimuon
production in pp pd interactions. These data sets are sensitive to different
combinations of parton distribution functions in the large-x region and,
therefore, provide different constraints when incorporated into global parton
distribution function fits. We compare and contrast the effects of these new
data on parton distribution fits, with special emphasis on the effects at large
x. The effects of the use of nuclear targets in the neutrino and antineutrino
data sets are also investigated.Comment: 24 pages, 13 figure
Uncertainties in determining parton distributions at large x
We critically examine uncertainties in parton distribution functions (PDFs)
at large x arising from nuclear effects in deuterium F2 structure function
data. Within a global PDF analysis, we assess the impact on the PDFs from
uncertainties in the deuteron wave function at short distances and nucleon
off-shell effects, the use of relativistic kinematics, as well as the use of
less a restrictive parametrization of the d/u ratio. We find that in particular
the d-quark and gluon PDFs vary significantly with the choice of nuclear model.
We highlight the impact of these uncertainties on the determination of the
neutron structure function, and on W boson production and parton luminosity at
the Tevatron and the LHC. Finally, we discuss prospects for new measurements
sensitive to the d-quark and gluon distributions but insensitive to nuclear
corrections.Comment: 37 pages, 13 figures. Final published versio
New parton distributions from large-x and low-Q^2 data
We report results of a new global next-to-leading order fit of parton
distribution functions in which cuts on W and Q are relaxed, thereby including
more data at high values of x. Effects of target mass corrections (TMCs),
higher twist contributions, and nuclear corrections for deuterium data are
significant in the large-x region. The leading twist parton distributions are
found to be stable to TMC model variations as long as higher twist
contributions are also included. The behavior of the d quark as x-->1 is
particularly sensitive to the deuterium corrections, and using realistic
nuclear smearing models the d-quark distribution at large x is found to be
softer than in previous fits performed with more restrictive cuts.Comment: 31 pages, 8 figures. Minor corrections. References added. To appear
in Phys.Rev.
Renaissance of the ~1 TeV Fixed-Target Program
This document describes the physics potential of a new fixed-target program
based on a ~1 TeV proton source. Two proton sources are potentially available
in the future: the existing Tevatron at Fermilab, which can provide 800 GeV
protons for fixed-target physics, and a possible upgrade to the SPS at CERN,
called SPS+, which would produce 1 TeV protons on target. In this paper we use
an example Tevatron fixed-target program to illustrate the high discovery
potential possible in the charm and neutrino sectors. We highlight examples
which are either unique to the program or difficult to accomplish at other
venues.Comment: 31 pages, 11 figure
- …