42 research outputs found

    The Design of the Orthogonal Box Cavity

    Get PDF
    The muon collider and/or the neutrino factory require large accelerating electric field gradients immersed in large (3 to 6 T) solenoidal magnetic fields for ionization cooling of muon beams. Our original vacuum breakdown study demonstrated a loss of achievable peak accelerating gradient in solenoidal magnetic fields by a factor 2 or greater. The Muon Collaboration has developed a theory of a method to suppress high electric field breakdown in vacuum cavities needed for a Muon collider or neutrino factory. It has been shown in our studies and by others that high gradient electric field emitted electrons (dark current) are the primary cause of breakdown. A DC magnetic field orthogonal to the RF electric accelerating field prevents dark current high field emitted electrons from traveling across the accelerating gap and then will prevent breakdown. We have decided to test this theory by building a special cavity in the shape of vacuum box. Figure 1 is a simplified view of the cavity design. The design is based on an 805 MHz WR975 waveguide cavity resonating in the TE{sub 101} mode. For the TE{sub 101} mode the resonant frequency f{sub 0} is given by the relationship f{sub 0} = c[(I/a){sup 2} + (m/b){sup 2} + (n/d){sup 2}]{sup 0.5}/2 where a and d are the lengths of the base sides and b is the height of the box in MKS units and c is the velocity of light

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Ascorbate enhances iron uptake into intestinal cells through formation of a FeCl3-ascorbate complex

    Get PDF
    It has been well documented that ascorbate enhances iron uptake, with a proposed mechanism based on reduction to the more absorbable ferrous form. We have performed a study on the effects of ascorbate on ferric iron uptake in the human epithelial Caco-2 cell-line. Ascorbate increased uptake in a concentration- dependent manner with a significant difference between iron uptake and reduction. Uptake kinetics are characteristic of a non-essential activator and the formation of an Fe3+-ascorbate complex. This investigation provides evidence that ascorbate enhances the apical uptake of ferric iron into Caco-2 cells through the formation of a Fe3+-ascorbate complex. (C) 2010 Elsevier Ltd. All rights reserved
    corecore