160 research outputs found

    Phylogenetic Analysis of Cell Types using Histone Modifications

    Full text link
    In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play a significant role in the differentiation process. In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference based on ChIP-Seq histone modification data. We propose new data representation techniques and new distance measures for ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful trees that indicate how diverse types of cells are related. We demonstrate our approach on H3K4me3 and H3K27me3 data for 37 and 13 types of cells respectively, using the dataset to explore various issues surrounding replicate data, variability between cells of the same type, and robustness. The promising results we obtain point the way to a new approach to the study of cell differentiation.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Evaluating synteny for improved comparative studies

    Get PDF
    Motivation: Comparative genomics aims to understand the structure and function of genomes by translating knowledge gained about some genomes to the object of study. Early approaches used pairwise comparisons, but today researchers are attempting to leverage the larger potential of multi-way comparisons. Comparative genomics relies on the structuring of genomes into syntenic blocks: blocks of sequence that exhibit conserved features across the genomes. Syntenic blocs are required for complex computations to scale to the billions of nucleotides present in many genomes; they enable comparisons across broad ranges of genomes because they filter out much of the individual variability; they highlight candidate regions for in-depth studies; and they facilitate whole-genome comparisons through visualization tools. However, the concept of syntenic block remains loosely defined. Tools for the identification of syntenic blocks yield quite different results, thereby preventing a systematic assessment of the next steps in an analysis. Current tools do not include measurable quality objectives and thus cannot be benchmarked against themselves. Comparisons among tools have also been neglected—what few results are given use superficial measures unrelated to quality or consistency. Results: We present a theoretical model as well as an experimental basis for comparing syntenic blocks and thus also for improving or designing tools for the identification of syntenic blocks. We illustrate the application of the model and the measures by applying them to syntenic blocks produced by three different contemporary tools (DRIMM-Synteny, i-ADHoRe and Cyntenator) on a dataset of eight yeast genomes. Our findings highlight the need for a well founded, systematic approach to the decomposition of genomes into syntenic blocks. Our experiments demonstrate widely divergent results among these tools, throwing into question the robustness of the basic approach in comparative genomics. We have taken the first step towards a formal approach to the construction of syntenic blocks by developing a simple quality criterion based on sound evolutionary principles. Contact: [email protected]

    TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis

    Get PDF
    Summary: TIBA is a tool to reconstruct phylogenetic trees from rearrangement data that consist of ordered lists of synteny blocks (or genes), where each synteny block is shared with all of its homologues in the input genomes. The evolution of these synteny blocks, through rearrangement operations, is modelled by the uniform Double-Cut-and-Join model. Using a true distance estimate under this model and simple distance-based methods, TIBA reconstructs a phylogeny of the input genomes. Unlike any previous tool for inferring phylogenies from rearrangement data, TIBA uses novel methods of robustness estimation to provide support values for the edges in the inferred tree. Availability: http://lcbb.epfl.ch/softwares/tiba.html. Contact: [email protected]

    Comparing genomes with rearrangements and segmental duplications

    Get PDF
    Motivation: Large-scale evolutionary events such as genomic rearrange. ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. Results: We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons

    Evaluating synteny for improved comparative studies

    Get PDF
    Motivation: Comparative genomics aims to understand the structure and function of genomes by translating knowledge gained about some genomes to the object of study. Early approaches used pairwise comparisons, but today researchers are attempting to leverage the larger potential of multi-way comparisons. Comparative genomics relies on the structuring of genomes into syntenic blocks: blocks of sequence that exhibit conserved features across the genomes. Syntenic blocs are required for complex computations to scale to the billions of nucleotides present in many genomes; they enable comparisons across broad ranges of genomes because they filter out much of the individual variability; they highlight candidate regions for in-depth studies; and they facilitate whole-genome comparisons through visualization tools. However, the concept of syntenic block remains loosely defined. Tools for the identification of syntenic blocks yield quite different results, thereby preventing a systematic assessment of the next steps in an analysis. Current tools do not include measurable quality objectives and thus cannot be benchmarked against themselves. Comparisons among tools have also been neglected-what few results are given use superficial measures unrelated to quality or consistency. Results: We present a theoretical model as well as an experimental basis for comparing syntenic blocks and thus also for improving or designing tools for the identification of syntenic blocks. We illustrate the application of the model and the measures by applying them to syntenic blocks produced by three different contemporary tools (DRIMM-Synteny, i-ADHoRe and Cyntenator) on a dataset of eight yeast genomes. Our findings highlight the need for a well founded, systematic approach to the decomposition of genomes into syntenic blocks. Our experiments demonstrate widely divergent results among these tools, throwing into question the robustness of the basic approach in comparative genomics. We have taken the first step towards a formal approach to the construction of syntenic blocks by developing a simple quality criterion based on sound evolutionary principles

    TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis

    Get PDF
    TIBA is a tool to reconstruct phylogenetic trees from rearrangement data that consist of ordered lists of synteny blocks (or genes), where each synteny block is shared with all of its homologues in the input genomes. The evolution of these synteny blocks, through rearrangement operations, is modelled by the uniform Double-Cut-and-Join model. Using a true distance estimate under this model and simple distance-based methods, TIBA reconstructs a phylogeny of the input genomes. Unlike any previous tool for inferring phylogenies from rearrangement data, TIBA uses novel methods of robustness estimation to provide support values for the edges in the inferred tree
    • …
    corecore