
Comparing genomes with rearrangements and

segmental duplications

Mingfu Shao* and Bernard M.E. Moret*

School of Computer and Communication Sciences, EPFL, CH-1015, Lausanne, Switzerland

*To whom correspondence should be addressed.

Abstract

Motivation: Large-scale evolutionary events such as genomic rearrange.ments and segmental du-

plications form an important part of the evolution of genomes and are widely studied from both

biological and computational perspectives. A basic computational problem is to infer these events

in the evolutionary history for given modern genomes, a task for which many algorithms have

been proposed under various constraints. Algorithms that can handle both rearrangements and

content-modifying events such as duplications and losses remain few and limited in their

applicability.

Results: We study the comparison of two genomes under a model including general rearrange-

ments (through double-cut-and-join) and segmental duplications. We formulate the comparison as

an optimization problem and describe an exact algorithm to solve it by using an integer linear pro-

gram. We also devise a sufficient condition and an efficient algorithm to identify optimal substruc-

tures, which can simplify the problem while preserving optimality. Using the optimal substructures

with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the

problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in

handling duplications) and compare its performance with that of the state-of-the-art method

MSOAR, using both simulations and real data. On simulated datasets, our method outperforms

MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accur-

acy, yet our method performs slightly better on each of the 10 pairwise comparisons.

Availability and implementation: http://lcbb.epfl.ch/softwares/coser.

Contact: mingfu.shao@epfl.ch or bernard.moret@epfl.ch

1 Introduction

In addition to the point mutations (single base-pair substitutions, in-

sertions and deletions), in the course of evolution, genomes also

undergo many large-scale events, which are usually divided into two

categories, rearrangements and content-modifying events. Genome

rearrangements include inversions, transpositions, circularizations

and linearizations, all of which act on a single chromosome, and

translocations, chromosomal fusions and fissions, which act on two

chromosomes. Rearrangements can shuffle the order and switch the

transcriptional orientations of the genes on chromosomes but can-

not change the number of gene copies. On the other hand, the con-

tent-modifying events, which include segmental duplications,

tandem duplications, gene insertions and losses, can affect the copy

number of the genes. These two types of large-scale events are ubi-

quitous in the tree of life and have been shown playing a very im-

portant role in the variations of the individual traits. The molecular

mechanisms behind them, although have been widely studied, are

still very diverse [see Gu et al. (2008) for a review].

One basic task of comparative genomics is to infer the events

took place in the evolutionary history for the extant species. Many

combinatorial optimization problems aiming to compute the most

parsimonious number of events between two given genomes (i.e. the

edit distance) are formulated, and many algorithms, heuristics or

exact ones, are proposed for them. When only rearrangement events

are considered, Hannenhalli and Pevzner (1995) gave the first poly-

nomial-time algorithm to compute the inversion distance, which

was later improved to linear time (Bader et al., 2001). Yancopoulos

et al. (2005) proposed a universal operation, called double-cut-and-

join (DCJ), which can unite most of the rearrangement events.

Under the DCJ model, the edit distance can also be computed in lin-

ear time, but in a more simple and elegant way (Bergeron et al.,

2006). Because of its simplicity, DCJ model has formed the basis for

the following algorithmic research on rearrangements (Bergeron et

al., 2009; Chen, 2010; Moret et al., 2013).

All of the above efficient algorithms assume that genomes do not

contain duplicated genes. In the presence of duplicated genes, most

VC The Author 2015. Published by Oxford University Press. i329
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 31, 2015, i329–i338

doi: 10.1093/bioinformatics/btv229

ISMB/ECCB 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148016569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://lcbb.epfl.ch/softwares/coser
http://www.oxfordjournals.org/

of the edit distance problems are NP-hard. For two genomes with

duplicated genes, Chen et al. (2005) proposed an efficient heuristic

to compute the inversion distance by decomposing the problem into

two new optimization problems. Shao et al. (2014) devised an exact

algorithm to compute the DCJ distance by formulating the problem

as an integer linear program. Both of the methods output a one-to-

one correspondence between the homologous genes and thus can be

applied to assign orthologs.

When only content-modifying events are considered, Kahn and

Raphael (2008) devised an efficient dynamic programming algo-

rithm to compute the duplication distance, which was later extended

by introducing likelihood techniques and then applied to reconstruct

the evolutionary history of the segmental duplications in human

genome (Kahn et al., 2010). Holloway et al. (2013) proposed an

alignment approach to reconstruct the ancestral genome for two

genomes with segmental duplications and gene losses and applied it

in a phylogenetic context to infer the evolution of the stable RNA

gene content and organization in various genomes.

When both rearrangements and content-modifying events are

considered, El-Mabrouk (2001) proposed an efficient algorithm to

compute the edit distance for inversions and deletions. Braga et al.

(2010, 2011) gave a linear time algorithm to compute the edit dis-

tance for DCJs, insertions and deletions. Notice that these algo-

rithms also assume that the given genomes do not contain

duplicated genes. Shao and Lin (2012) gave a 1.5-approximation al-

gorithm to compute the edit distance for two genomes in the pres-

ence of duplicated genes under a model that includes DCJs, single-

gene insertions and single-gene deletions. Fu et al. (2007) extended

the heuristics in Chen et al. (2005) to unite rearrangements and sin-

gle-gene duplications as a new software package, called MSOAR,

which can be applied to detect in-paralogs in addition to orthologs.

In this article, we compare two genomes in the presence of dupli-

cated genes with DCJs and segmental duplications. Formally, the

problem is to compute a set of segmental duplications in each genome

and a bijection between the nonduplicated genes, such that the total

cost of the segmental duplications and the DCJs induced by the bijec-

tion is minimized. We propose an exact algorithm for this problem by

formulating it as an integer linear program. Based on studying the

underlying structure of problem, we then devise an efficient prepro-

cessing algorithm to simplify the problem while keeping the optimal-

ity. We also discuss and propose a reasonable way to balance the

costs between DCJs and segmental duplications. Finally, we apply our

method to assign in-paralogs and orthologs and compare its perform-

ance with MSOAR on both simulated and biological datasets.

2 Problem statement

We model each genome as a set of chromosomes and model each

chromosome as a linear or circular list of genes. Each gene is repre-

sented by a signed (þ or –) symbol, where the sign indicates the tran-

scriptional direction of this gene. Homologous genes are grouped

into gene families. For a genome X, we use AðXÞ to denote all the

gene families in X and use F(X, f) to denote the set of genes in X

that come from gene family f.

We say consecutive genes on one chromosome form a segment.

The length of a segment s is defined as the number of genes in s,

denoted by jsj. We say two segments in the same genome are

independent if they do not contain the same gene. We say segments

s ¼ ða1; a2; � � �; anÞ and t ¼ ðb1; b2; � � �; bnÞ are homologous if ai and

bi are homologous and have the same sign for all 1� i �n or ai and

bnþ1�i are homologous and have the opposite sign for all 1 �i �n.

We say segment s is possibly duplicated, if there exists segment t in

the same genome such that s and t are independent and homologous.

For a genome X, we use SðXÞ to denote the set of all the possibly

duplicated segments in X (Fig. 1a). We say a subset S � SðXÞ is

independent if every two segments in S are independent. For an inde-

pendent subset S � SðXÞ, we use X n S to denote the new genome

after removing all genes appearing in the segments in S from X. Given

two genomes X and Y, we say two independent subsets S � SðXÞ and

T � SðYÞ are consistent if X n S and Y n T have the same gene

content, i.e. for each gene family f 2 AðXÞ [AðYÞ, we have

jFðX n S; f Þj ¼ jFðY n T; f Þj (Fig. 1a). In this article, we assume that

the given two genomes X and Y satisfy that AðXÞ ¼ AðYÞ; otherwise

we modify them by removing all the genes that are not in

AðXÞ \ AðYÞ. With this assumption, there always exist two independ-

ent subsets S 2 SðXÞ and T 2 SðYÞ that are consistent.

Suppose we are given two independent consistent subsets S 2 SðXÞ and

T 2 SðYÞ. We denote by BðX n S;Y n TÞ the set of bijections that map

each gene in X n S to a homologous gene in Y n T. If X n S and Y n T

contain only singletons, i.e. we have jFðX n S; f Þj ¼ jFðY n T; f Þj ¼ 1 for

all f 2 AðXÞ [AðYÞ, then we have jBðX n S;Y n TÞj ¼ 1, and the DCJ

distance between X n S and Y n T is well defined and can be computed in

linear time (Bergeron et al., 2006). Once a bijection B 2 BðX n S;Y n TÞ is

given, we can relabel X n S and Y n T by assigning each pair of genes in B

with a distinct gene family and thus results in two new genomes with only

singletons. We denote by d(B) the DCJ distance between these two new gen-

omes induced by bijection B.

In this article, we study the following problem: given two gen-

omes X and Y satisfying AðXÞ ¼ AðYÞ, and a cost function cð�Þ,
which maps each segment in SðXÞ [SðYÞ to a positive value, com-

pute a triple Q ¼ ðS;T;BÞ, where S � SðXÞ and T � SðYÞ are two

independent consistent subsets and B 2 BðX n S;Y n TÞ, such that

the total cost of Q, cðQÞ ¼
X

s2S[T
cðsÞ þ dðBÞ, is minimized.

3 ILP formulation

We now formulate the above problem as an integer linear program.

To achieve that, we first introduce the adjacency graph in Section

(a) (b)

(c) (d)

Fig. 1. (a) Two genomes X and Y. Genes in the same gene family are

represented by the same symbol with different superscripts. We have SðX Þ
¼ fða1Þ; ða2Þ; ðb1Þ; ðb2Þg and SðY Þ ¼ fðc2Þ; ðb3Þ; ðc3Þ; ð�b4Þg and S ¼ fða2Þg
and T ¼ fðc2Þg are two consistent subsets. (b) The genomes X n S and Y n T

and the bijection B. (c) The adjacency graph w.r.t. Q ¼ ðS;T ;BÞ. Black edges

are represented by long thin lines, while gray edges by short thick lines. Head

extremities are represented by circles, while tail extremities by squares. (d)

The extended adjacency graph w.r.t. Q, in which internal edges are repre-

sented by double lines

i330 M.Shao and B.M.E.Moret

3.1, which is the essential data structure to compute the DCJ dis-

tance. We also propose a new extension of the adjacency graph,

called the extended adjacency graph, which can incorporate dupli-

cated genes and thus forms the basis for the following ILP formula-

tion. We then describe a capping method to remove the telomeres,

in Section 3.2, which allows us only to count the number of cycles

when computing the DCJ distance. On the basis of them, we finally

give the ILP formulation in Section 3.3.

3.1 Adjacency graph
We first introduce some notations. The two ends of a gene a are

called extremities. The head is denoted by ah and the tail is denoted

by at. The set of all extremities in genome X is called the extremity

set of X, denoted by EðXÞ. If genes a and b are homologous, we also

say the two corresponding extremity pairs, ah and bh, at and bt, are

homologous. Two consecutive genes a and b form one adjacency,

which is represented by a set of two extremities. Thus, each adja-

cency comes in one of the four types: fat;btg; fah; btg, fat; bhg and

fah;bhg. If gene a lies at one end of a linear chromosome, then this

end can be represented by a set of one extremity, fahg or fatg, called

a telomere.

Suppose that we are given a triple Q ¼ ðS;T;BÞ, where

S � SðXÞ, T � SðYÞ are two independent consistent subsets and

B 2 BðX n S;Y n TÞ. We can build the adjacency graph w.r.t. Q,

denoted by G(Q), as follows. We first build X n S and Y n T through

removing all genes in S [T and take all the extremities in them, i.e.

EðX n SÞ [EðY n TÞ, as the vertices of G(Q). Then for each adja-

cency in X n S and Y n T, we add one gray edge to connect the two

extremities in it. Finally, for each pair of homologous extremities

specified by B (each homologous gene pair in B specifies two pairs

of homologous extremities), we add one black edge to connect them

(Fig. 1a–c). Clearly, in G(Q), the degree of each vertex is at most 2,

and thus it consists of a set of vertex-disjoint cycles and paths. The

length of a cycle (or a path) is defined as the number of black edges

in it. Let c be the number of cycles and o be the number of odd-

length paths in G(Q). We have that the DCJ distance induced by B

can then be computed as dðBÞ ¼ n� c� o=2, where n is the number

of genes in X n S (Bergeron et al., 2006).

Given a triple Q ¼ ðS;T;BÞ defined above, we propose an

equivalent form of G(Q), called the extended adjacency graph w.r.t.

Q, denoted by G0ðQÞ. The set of vertices of G0ðQÞ includes all the

extremities in X and Y, i.e. EðXÞ [EðYÞ. For each adjacency in X

and Y, there is one gray edge connecting the two extremities in it.

For each pair of homologous extremities specified by B, there is one

black edge connecting them. For each gene contained in some seg-

ment in S [T, there is one internal edge connecting the two extrem-

ities in this gene (Fig. 1d). The difference between G0ðQÞ and G(Q)

is that, the latter one explicitly removes those extremities in the

genes in S [T, whereas the former one keeps them but adds internal

edges connecting the two extremities in those genes. Clearly, G0ðQÞ
also consists a set of vertex-disjoint cycles and paths, and there is a

one-to-one correspondence between the connected components in

G(Q) and that in G0ðQÞ. Thus, the DCJ distance induced by B can

also be computed as dðBÞ ¼ n� c0 � o0=2, where c0 is the number of

cycles and o0 is the number of odd-length paths in G0ðQÞ, and n is

the number of genes in X n S. As we will see later, this extended ad-

jacency graph is the key point in devising the ILP formulation.

3.2 Add capping genes
In Shao and Lin (2012), we described a method to remove telomeres

by introducing capping genes. A capping gene contains only one

extremity, which combines with the adjacent telomere (or another

capping gene) to form one adjacency. All capping genes are homolo-

gous to each other, forming a distinct gene family, denoted by fs.

Given two genomes X and Y with lX and lY linear chromosomes, re-

spectively (without loss of generality, we assume that lX�lY), we

first add one capping gene to each end of all the linear chromosomes

in X and Y; then we add ðlX � lYÞ dummy chromosomes, each of

which contains only a pair of capping genes, to genome Y (Fig. 2).

We denote by X̂ and Ŷ the two new genomes after adding capping

genes for X and Y. Clearly, we have jFðX̂; fsÞj ¼ jFðŶ ; fsÞj. Thus,

given a pair of independent consistent subsets S � SðXÞ and

T � SðYÞ, we know that X̂ n S and Ŷ n T also have the same gene

content. Using the same argument as in Shao et al. (2014), we can

prove that

min
B̂2BðX̂nS;Ŷ nTÞ

dðB̂Þ ¼ min
B2BðXnS;YnTÞ

dðBÞ;

and the optimal B can be recovered from the optimal B̂ through dis-

carding the pairs with capping genes. This statement allows us to

add capping genes to remove telomeres on the two given genomes

without affecting the optimal bijection. Since the two new genomes

X̂ and Ŷ do not contain telomeres, we have that for any triple

Q ¼ ðS;T; B̂Þ, where S � SðXÞ, T � SðYÞ and B̂ 2 BðX̂ n S; Ŷ n TÞ,
both G(Q) and G0ðQÞ contain only cycles (Fig. 2). This property

allows us only to count the number of cycles when computing the

DCJ distance, which simplifies the following ILP formulation.

3.3 ILP formulation
Let X and Y be two given genomes after adding capping genes.

Let Q� ¼ ðS�;T�;B�Þ be the optimal triple minimizingX
s2S�[T�

cðsÞ þ dðB�Þ, where we have S� � SðXÞ; T� � SðYÞ and

B� 2 BðX n S�;Y n T�Þ. (Notice that here X and Y may contain cap-

ping genes, but we define SðXÞ and SðYÞ are in terms of the original

genomes, which do not contain segments with capping genes.) To

facilitate our description, we use a 2 X to denote that gene a is con-

tained in genome X. We use a 2 s to denote that gene a is contained

in segment s. We denote by fa the gene family to which gene a

(a) (b)

(c) (d)

Fig. 2. (a) Two genomes X and Y. (b) The genomes X̂ and Ŷ after adding cap-

ping genes, where capping genes are represented by diamonds. (c) The ex-

tended adjacency graph w.r.t. (S, T, B), where S ¼ fða2Þg; T ¼ fðb2Þg and B

maps a1, b1 and c1 to a3, b3 and c2, respectively. (d) The extended adjacency

graph w.r.t. ðS;T ; B̂ Þ, where B̂ consists of the two pairs mapping s1 and s2 to

s3 and s4, respectively, and those pairs in B

Comparing genomes with rearrangements and segmental duplications i331

belongs. We say gene a is duplicated in Q�, if there exists one seg-

ment s 2 S� [T� such that a 2 s and nonduplicated otherwise.

We now give the ILP formulation to compute Q�. For each seg-

ment s 2 SðXÞ [SðYÞ, we have one binary variable xs to indicate

whether s 2 S� [T�. For each gene a 2 X [Y, we have one binary

variable ya to indicate whether a is duplicated in Q�. We use the fol-

lowing two sets of constraints to guarantee that ya¼1 if and only if

there exists one segment s 2 S� [T� such that a 2 s:

ya � xs; 8s 2 SðXÞ [SðYÞ and8a 2 s;

ya �
X

s2SðXÞ[SðYÞ:a2s

xs; 8a 2 X [Y:

We require that these segments in S� [T� are independent, i.e.

there do not exist two of them that contain the same gene:

X

s2SðXÞ[SðYÞ:a2s

xs�1; 8a 2 X [Y:

We also require that X n S� and Y n T� have the same gene con-

tent, i.e. for each gene family there must be an equal number of non-

duplicated genes in Q� in this family in each genome:

X

a2FðX;f Þ
ð1� yaÞ ¼

X

b2FðY;f Þ
ð1� ybÞ; 8f 2 AðXÞ:

And for each gene family, at least one gene is nonduplicated

in Q�:

X

a2FðX;f Þ
ð1� yaÞ � 1; 8f 2 AðXÞ;

X

b2FðY;f Þ
ð1� ybÞ � 1; 8f 2 AðYÞ:

For each pair of homologous genes a 2 X and b 2 Y, we add one

binary variable za;b to indicate whether B� contains this pair. We re-

quire that for each gene in X [Y, it is mapped to exactly one hom-

ologous gene in the opposite genome if and only if it is

nonduplicated in Q�:

X

b2FðY;faÞ
za;b ¼ 1� ya; 8a 2 X;

X

a2FðX;fbÞ
za;b ¼ 1� yb; 8b 2 Y:

These constraints guarantee that these pairs in B� form a valid bi-

jection between the genes in X n S� and those in Y n T�. To compute

dðB�Þ, we need to count the number of cycles in G0ðQ�Þ. We add a

variable le for each extremity e 2 EðXÞ [EðYÞ to represent the label

of e. We then assign a distinct upper bound for le, denoted by Ue (for

example, we can just sort all the extremities in EðXÞ [EðYÞ in an arbi-

trary order and assign Ue as the index of e in the sorted list):

0�le�Ue; 8e 2 EðXÞ [EðYÞ:

We then require that all the extremities in the same cycle in G0ð
Q�Þ have the same label. This can be achieved by forcing that the

two extremities connected by any edge in G0ðQ�Þ have the same

label. To guarantee this, we add the following three groups of con-

straints, each of which corresponds to one type of edges. First, we

require that the two extremities in each adjacency have the same

label (these constraints correspond to the gray edges):

lei ¼ lej
; 8fei; ejg form an adjacency in X or in Y:

Second, we require that each pair of extremities specified by B�

have the same label (these constraints correspond to the black

edges). To achieve that, we add the following four constraints for

each pair of homologous genes a 2 X and b 2 Y (if a and b are cap-

ping genes, then we have ah¼ at and bh¼bt and thus the following

four constraints degenerate into two):

lah
� lbh

þð1� za;bÞ �Uah
;

lbh
� lah

þð1� za;bÞ �Ubh
;

lat
� lbh

þð1� za;bÞ �Uat
;

lbt
� lah

þð1� za;bÞ �Ubt
:

Third, we require that the two extremities in each duplicated

gene have the same label (these constraints correspond to the in-

ternal edges):

lah
� lat

þ ð1� yaÞ �Uah
; 8a 2 X [Y;

lat
� lah

þ ð1� yaÞ �Uat
; 8a 2 X [Y:

We then add a binary variable we for extremity e to indicate

whether le reaches its upper bound:

we �Ue � le; 8e 2 EðXÞ [EðYÞ:

Since all the extremities in the same cycle in G0ðQ�Þ are forced to

have the same label, and all label variables have distinct upper

bounds, we know that for each cycle in G0ðQ�Þ at most one extrem-

ity can have its label reaching its upper bound. Thus, we have that

X

e2EðXÞ[EðYÞ
we

is exactly the number of cycles in G0ðQ�Þ. And dðB�Þ can then be

computed by

jXj �
X

a2X

ya �
X

e2EðXÞ[EðYÞ
we;

where the first two items give the number of genes in X n S�.

Finally, we set the objective function of the ILP as

min
X

s2SðXÞ[SðYÞ
cðsÞ � xs þ jXj �

X

a2X

ya �
X

e2EðXÞ[EðYÞ
we:

4 Identify optimal substructures

Given two genomes X and Y after adding capping genes, we say two

homologous segments s in X and t in Y form a pair of shared seg-

ments, denoted by hs; ti. Intuitively, shared segments are more likely

to be nonduplicated and mapped to each other. Below, we give one

sufficient condition and one algorithm to decide whether a pair of

shared segments is in some optimal solution, i.e. in this optimal solu-

tion, ai and bi are nonduplicated and ai is mapped to bi, for all

1�i�n. From now on, we assume that the cost function only de-

pends on the length of the segments, i.e. we assume that if jsj ¼ jtj
then we have cðsÞ ¼ cðtÞ.

4.1 A sufficient condition
We say gene a in genome X is isolated, if there does not exist any

segment s 2 SðXÞ such that a 2 s and jsj�2. The following theorem

gives a sufficient condition to decide whether a pair of shared seg-

ments of length two is an optimal substructure.

Theorem 1: Let p ¼ hða1; b1Þ; ða2; b2Þi. If we have a1 and a2 are

singletons, and b1 and b2 are isolated, then p is in some optimal

solution.

i332 M.Shao and B.M.E.Moret

Proof: Let Q ¼ ðS;T;BÞ be an arbitrary triple such that either b1

or b2 is duplicated in Q, or B does not contain hb1; b2i. Below, we

will show that we can always build a new triple Q0 ¼ ðS0;T 0;B0Þ in

which both b1 and b2 are nonduplicated and B0 contains hb1;b2i and

also verify that cðQ0Þ�cðQÞ. Since Q is arbitrary, this proves the

theorem.

First, assume that in Q both b1 and b2 are duplicated. Let s 2 S

and t 2 T be the segments containing b1 and b2, respectively.

Since both b1 and b2 are isolated, we know that jsj ¼ jtj ¼ 1. Let

S0 ¼ S n fsg and T 0 ¼ T n ftg. We have that X n S0 and Y n T 0 still

have the same content. Let B0 ¼ B [fhb1;b2ig. We have that

dðB0Þ ¼ dðBÞ, since X n S0 has one more gene than X n S, whereas

GðQ0Þ has one more cycle than G(Q) (Fig. 3a and b). Thus, we have

cðQ0Þ ¼
X

u2S0[T 0
cðuÞ þdðB0Þ ¼

X
u2S[T

cðuÞ � cðsÞ � cðtÞ þ dðBÞ�
X

u2S[T
cðuÞ þdðBÞ ¼ cðQÞ.

Second, assume that in Q gene, b2 is duplicated, while b1 is not (or

symmetrically, b1 is duplicated, while b2 is not). Suppose that b1 is

mapped to b3 in B, i.e. hb1; b3i 2 B. Let S0 ¼ S and

T 0 ¼ T n ftg [ft0g, where t 2 T is the segment containing b2 and t0 is

the segment containing only gene b3. Clearly, we also have that

X n S0 and Y n T 0 have the same content. Let

B0 ¼ B n fhb1; b3ig [fhb1; b2ig. To compare dðB0Þ with d(B), con-

sider the difference between GðQ0Þ and G(Q). In fact, we can trans-

form G(Q) into GðQ0Þ through two DCJs on genome Y (after that we

need to rename b3 as b2). We first perform one DCJ to cut b3 out to

create the adjacency fb3
h; b

3
t g (Fig. 3c and d). This operation might de-

crease the number of cycles, but the number decreased is at most 1 ac-

cording to the property of the DCJ model. We then insert b3 back as

the neighbor of a2 to form the segment ða2;b3Þ, which will increase

the number of cycles by 1 (Fig. 3d and e). This implies that the num-

ber of cycles in GðQ0Þ is no less than that in G(Q). In addition to the

fact that X n S0 and X n S have the same number of genes, we have

that dðB0Þ�dðBÞ. Thus, we have cðQ0Þ ¼
X

u2S0[T 0
cðuÞ þ dðB0Þ �X

u2S[T
cðuÞ � cðtÞ þ cðt0Þ þ dðBÞ ¼

X
u2S[T

cðuÞ þ dðBÞ ¼ cðQÞ.
The last equality uses the assumption that the cost function only de-

pends on the length of the segments.

Third, assume that in Q both b1 and b2 are nonduplicated, and

b1 is mapped to b3 while b4 is mapped b2. Let S0 ¼ S; T 0 ¼ T

and B0 ¼ B n fhb1;b3i; hb4;b2ig [fhb1; b2i; hb4; b3ig. Using the

same technique in the Theorem 1 (Shao et al., 2014), we can

prove that dðB0Þ�dðBÞ. Thus, we still have cðQ0Þ ¼X
u2S0[T0

cðuÞ þ dðB0Þ�cðQÞ:

4.2 An algorithm
We say a pair of shared segments p ¼ hða1; a2; � � � ; anÞ; ðb1; b2; � � � ; bnÞi
between genomes X and Y is half fixed, if bi is singleton for all

1�i�n (and thus none of them can be duplicated) and all genes in

FðX; f aiÞ are isolated for all 1�i�n. Let p be such a pair of half fixed

shared segments (PHFSS for short). We use AðpÞ to denote all the

gene families in p, i.e. AðpÞ ¼ ffa1
; fa2

; � � � ; fan
g. In this section, we

propose an algorithm to decide whether a PHFSS is in some optimal

solution. Notice that for a PHFSS p, if we further know that in some

optimal solution ak is mapped to bk for some 1�k�n, then we can

immediately conclude that the whole p is in some optimal solution

by iteratively applying theorem 3.

Let Q�
p
¼ ðS;T;BÞ be the triple with smallest total cost among

these triples that do not contain p (i.e. bi is not mapped to ai for all

1�i�n). We now modify Q�
p

to replace a0i with ai, where a0i
is the gene that are mapped to bi in Q�

p
. Notice that

fða1Þ; ða2Þ; � � � ; ðanÞg � S, since ai is duplicated in Q�
p

(because bi is

singleton and a0i is nonduplicated in Q�
p
) and all genes in FðX; f ai

Þ

are isolated. Let S0 ¼ S n fða1Þ; � � � ; ðanÞg[fða01Þ; � � � ; ða0nÞg; B0 ¼ B

nfha01; b1i; � � � ; ha0n; bnig [fha1; b1i; � � � ; han;bnig and Q�p ¼ ðS0;T;B0Þ.
Clearly Q�p contains p. According to the definition of Q�

p
, if we can

show that cðQ�pÞ�cðQ�
p
Þ, then p is in some optimal solution. From

the construction of Q�p, we can see clearly that the cost of the seg-

mental duplications in Q�
p

is equal to that in Q�p. Thus, we only need

to compare the number of DCJs between Q�
p

and Q�p.

We compare the number of cycles in G0ðQ�
p
Þ and G0ðQ�pÞ. Notice

that G0ðQ�
p
Þ and G0ðQ�pÞ differ only on these gene families in AðpÞ.

We now define a new graph to focus on AðpÞ while hiding others.

Let Q be a triple and p be a PHFSS. We can build the reduced adja-

cency graph w.r.t. Q and p, denoted by R(Q, p), as follows. The ver-

tices of R(Q, p) are divided into two types, the core vertices, which

are exactly those extremities in the genes in the gene families in AðpÞ
and the boundary vertices, which consist of these extremities that

form adjacencies with core vertices (Fig. 4a and b). The edges of

R(Q, p) are divided into four types, gray edges, black edges, internal

edges and reduced edges. For any two vertices in R(Q, p), they are

connected by gray edges or internal edges, if and only if they are

connected by the same type of edge in G0ðQÞ. For any two core ver-

tices in R(Q, p), they are connected by one black edge if and only if

they are connected by one black edge in G0ðQÞ. For any two bound-

ary vertices in R(Q, p), they are connected by one reduced edge if

there exists one path connecting them in G0ðQÞ without going

through any core vertices or boundary vertices (except its two ends).

Clearly, R(Q, p) also consists of a set of vertex-disjoint cycles

(Fig. 4c and d).

We claim that the difference of the number of cycles between

G0ðQ�
p
Þ and G0ðQ�pÞ is the same as that between RðQ�

p
;pÞ and

RðQ�p;pÞ. In fact, the cycles that do not contain any core vertices or

boundary vertices are the same between Q�
p

and Q�p according to the

construction of Q�p and those cycles do not appear in either RðQ�
p
;pÞ

or RðQ�p;pÞ. Moreover, for each cycle in G0ðQ�
p
Þ that contains some

core vertices, there exists one corresponding cycle in RðQ�
p
; pÞ,

since the reduction procedure in constructing RðQ�
p
; pÞ can only

shorten the length of each cycle, while it cannot merge or split it. It

is the same for G0ðQ�pÞ and RðQ�p; pÞ. Thus, the claim holds.

Furthermore, the reasoning used here also implies that we can con-

struct RðQ�p;pÞ directly from RðQ�
p
; pÞ, rather than from G0ðQ�pÞ:

we can first replace the black edges corresponding to ha0i;bii with

(a) (b) (c)

(d) (e)

Fig. 3. (a,b) The adjacency graph before and after adding hb1;b2i. (c–e)

Transforming G(Q) into GðQ 0Þ using two DCJs. Irrelevant extremities are rep-

resented by stars

Comparing genomes with rearrangements and segmental duplications i333

that corresponding to hai;bii and then replace the internal edges cor-

responding to ai with that corresponding to a0i.

In summary, once we know RðQ�
p
;pÞ, we can then construct

RðQ�p;pÞ and compare the number of cycles in them. If the number

of cycles in RðQ�p;pÞ is no less than that in RðQ�
p
; pÞ, then p is in

some optimal solution. However, the problem is that we do not

know RðQ�
p
; pÞ. Our strategy is to enumerate all the possibilities of

RðQ�
p
;pÞ. The vertices of RðQ�

p
; pÞ, i.e. all the core vertices and all

the boundary vertices w.r.t. p, can be computed in advance very eas-

ily. All the genes of ai, 1�i�n, are duplicated in RðQ�
p
; pÞ by defin-

ition, and thus the two extremities in ai are always connected by one

internal edge in RðQ�
p
;pÞ. All genes in FðX; fai

Þ n faig are possibly

mapped to bi in RðQ�
p
; pÞ. For any two boundary vertices (maybe in

the same genome), we need to check whether they can be connected

by one reduced edge in RðQ�
p
;pÞ, i.e. whether there exists one pos-

sible path connecting them that does not go through any other core

vertices or boundary vertices. Notice that this path must be alternat-

ing, i.e. the edges with odd indices must be either black edges or in-

ternal edges and the edges with even indices must be gray edges

(Fig. 4c and d).

There exists a linear time algorithm to decide the existence of an

alternating path between two given vertices (Bang-Jensen and Gutin,

1998). We now adapt it for our use. Given a PHFSS p and two

boundary vertices x and y, the algorithm first build a graph with

V1 [V2 [fx; yg as its vertices, where V1 is the set of all extremities

except all the core vertices and boundary vertices and V2 is a copy of

V1. Two extremities in V1 are connected by one gray edge if they

form one adjacency. Two homologous extremities in V2 in different

genomes are connected by one black edge, and the two extremities

in V2 in a possibly duplicated gene are connected by one internal

edge. We connect x (resp. y) to its all homologous extremities in V2

in the opposite genome by black edges. Finally, all the counterparts

between V1 and V2 are connected by bridging edges (Fig. 5).

Clearly, all the bridging edges form a matching of size jV1 j, denoted

by M. The algorithm then computes an augmenting path w.r.t. M

using the Blossom algorithm, which takes linear time. We claim that

such an augmenting path exists if and only if there exists one alter-

nating path connecting x and y without going through any core ver-

tices or boundary vertices. In fact, if such an augmenting path exists,

then the two ends of this path must be x and y, since they are the

only two unmatched vertices. We claim that the edges in the aug-

menting path that are not in M form an alternating path connecting

x and y. This is because edges in M are spanning V1 and V2, whereas

gray edges are all inside in V1 and black edges and internal edges are

inside in V2. The opposite side of statement can be reasoned in a

similar way.

The algorithm to decide whether a given PHFSS p is in some op-

timal solution proceeds as follows. The first phase of the algorithm

is to compute the core vertices and the boundary vertices w.r.t. p and

then for each pair of boundary vertices, to check whether they can

be connected by a reduced edge. If the total number of edges

(reduced edges plus those among core vertices) is larger than log n,

the algorithm terminates. Otherwise, the algorithm comes to the se-

cond phase. It enumerates all the possibilities of RðQ�
p
; pÞ: for each

possible valid combination of the reduced edges (i.e. they form a

matching that covers all the boundary vertices), it enumerates all the

possible valid mappings for the genes in AðpÞ (ai cannot be mapped

to bi by the definition of RðQ�
p
;pÞ) and the mapping that yields the

maximum number of cycles, plus the current combination of the

reduced edges, forms one possibility of RðQ�
p
; pÞ. After that, for

each possibility of RðQ�
p
; pÞ, it then builds RðQ�p; pÞ and com-

pares the number of cycles between them. If the number of cycles in

RðQ�p;pÞ is always no less than that in RðQ�
p
;pÞ for all the possibil-

ities, then the algorithm concludes that p is in some optimal

solution.

The above algorithm runs in polynomial time. In fact, the first

phase runs in polynomial-time, since we can decide the existence of

a reduced edge for each pair of boundary vertices in linear time.

In the second phase, the number of edges is in logarithmic-size,

which implies that the number of possibilities of RðQ�
p
; pÞ is in poly-

nomial size. Thus, the second phase also runs in polynomial time.

We remark that usually not all pairs of boundary vertices can be

connected by a reduced edge (Fig. 6). In fact, if this is not the case,

(a)

(b)

(c)

(d)

Fig. 4. X ¼ ða3; c1; a1;b1;d1;b3; e1Þ; Y ¼ ðd2; a2;b2; c2;�d3; e2Þ. p ¼ hða1;b1Þ;
ða2;b2Þi. The four subgraphs show G 0ðQ�

p
Þ; G 0ðQ�pÞ; RðQ�

p
;pÞ and RðQ�p ;pÞ, re-

spectively. The core vertices are shown as solid patterns, and the boundary

vertices are shown as patterns with one inner point. Reduced edges are

shown as dashed lines

Fig. 5. The underlying graph used to decide the existence of an alternating

path connecting c1
h and e1

t w.r.t. p for the same instance in Figure 4. All bridg-

ing edges are shown as dotted lines

i334 M.Shao and B.M.E.Moret

then there always exists one possibility such that RðQ�
p
;pÞ contains

more cycles than RðQ�p; pÞ, in which case the algorithm fails. In

other words, the first phase to identify possible reduced edges is very

essential, which not only decreases the number of possibilities but

more importantly makes the algorithm capable of identifying opti-

mal substructures. We also remark that this algorithm is a sufficient

test, i.e. if it returns ‘yes’, then p is guaranteed in some optimal solu-

tion. However, if it returns ‘no’, then it is still possible that p is in

some optimal solution. This is because two reduced edges in RðQ�
p
;

pÞ might not be able to coexist in G0ðQ�
p
Þ.

We can apply the theorem in Section 4.1 and the algorithm in

Section 4.2 on all shared segments to verify their optimality. If such

an optimal substructure is identified, we immediately fix it and up-

date the genomes through assigning each pair of genes in it a distinct

gene family. We can iteratively repeat this process until no such opti-

mal substructure can be found. This serves as a preprocessing algo-

rithm to simplify the problem before calling the ILP solver. The

performance of this preprocessing algorithm on real genomes is ana-

lyzed in Table 4.

5 Set the cost

Under a parsimonious model, it is natural to set a unit cost for all

segmental duplications (as we do for all DCJs). However, in this

case, two segmental duplications, one in each genome, that create a

pair of shared segments can be always explained as two DCJs with

the same total cost. Consider the example in Figure 7a, for which we

have two optimal solutions with total cost of 2: one is to regard a2

and a4 as duplicated genes, and the other uses two DCJs, which first

cut a2 out from X and then insert it back between c1 and d1. The

scenario in the second case (two DCJs using one circular chromo-

some as intermediate) requires three inversions to explain, and

therefore it is much less unlikely to happen comparing with the first

scenario. Thus, to avoid the second case we set cð�Þ < 1.

On the other hand, if we have cð�Þ�0:5, then every DCJ that in-

verts a possibly duplicated segment can be always explained by two

segmental duplications with the same or even better total cost.

Consider the example in Figure 7b, for which one solution is to use

only one DCJ to invert the segment ða2; b2Þ on X. However, if we

have cð�Þ�0:5, then we can regard ða2;b2Þ and ð�b4;�a4Þ as dupli-

cated segments, whose total cost is at most 1. Thus, to avoid the se-

cond case, we need to set cð�Þ > 0:5.

Combining the above two facts, in the following experiments,

we set cð�Þ ¼ 0:75.

6 Infer in-paralogs and orthologs

Under a most parsimonious evolutionary scenario, the duplicated

genes in the optimal triple infer the in-paralogs in each genome,

whereas the bijection between the nonduplicated genes in the two

genomes infers a subset of the orthology pairs [more specifically,

positional orthologs (Dewey, 2011)]. In the following, we apply our

method to infer in-paralogs and orthologs on both simulated data-

sets and biological datasets and compare its performance with

MSOAR.

6.1 Results on simulated datasets
We simulate a pair of genomes as follows. We start from an ancestor

genome with only one linear chromosome consisting of N¼5000

singletons (we also test N¼1000 and N¼2000; the results are not

presented since they agree with N¼5000). We then perform S1 seg-

mental duplications on the ancestor genome to make some gene

families contain more than one copy. A segmental duplication ran-

domly chooses a segment of length L and inserts its copy to another

random position. The two extant genomes then speciate independ-

ently from this ancestor genome. The speciation process on each

branch includes randomly mixed S2 segmental duplications and D

DCJs. A DCJ randomly chooses two positions in the genome and

then reverses the segment in between. We make sure that the ex-

pected number of genes per gene family in each extant genome is 1.5

(this number is comparable to that in human genome, which is

1.46), therefore we have that S1þ S2 ¼ 0:5 �N=L. We further fix S1

¼ 0:2 �N=L and S2 ¼ 0:3 �N=L (we also test S1 ¼ 0 and

S2 ¼ 0:5 �N=L, and the results are almost the same). Thus, a simula-

tion configuration is determined by parameters L and D.

For each pair of simulated genomes X and Y, we take them as in-

put to run MSOAR and our method. For MSOAR, we run its binary

version downloaded from http://msoar.cs.ucr.edu/. For our method,

we first apply the preprocessing algorithm described in Section 4

and then formulate the simplified problem as an ILP instance, which

is solved using the GUROBI solver. We set the time limit to 2 h for

each instance, i.e. if the ILP solver does not return the optimal solu-

tion in 2 h, we terminate it and return the current sub-optimal

solution.

Both methods return triples (S, T, B), where S and T infers the

in-paralogs in the two extant genomes, respectively, and B infers the

orthology pairs. We now give the measures to evaluate them. First,

we regard the problem to infer in-paralogs as a standard binary clas-

sification problem: those genes that are generated by segmental du-

plications in the speciation process are considered as gold standard

positive in-paralogs and those genes that are in the segments in S

[T are considered as predicted positive in-paralogs. Thus, we use

the sensitivity and specificity to measure (S, T). To evaluate the per-

formance of B, we refer to those gene pairs in the two extant gen-

omes that correspond to the same gene in the ancestor genome as

the true orthology pairs. We therefore use the following way to

evaluate B: we say a pair in B is assessable, if at least one of its two

genes can be found in some true orthology pair, and the accuracy of

Fig. 6. All the possible reduced edges in RðQ�
p
;pÞ for the same instance in

Figure 4. We can verify that among all possibilities of RðQ�
p
;pÞ, the number of

cycles in RðQ�p ;pÞ is always no less than that in RðQ�
p
;pÞ. Thus, in this in-

stance, p is optimal

(a) (b)

Fig. 7. (a) An example in which there are two optimal solutions if cð�Þ ¼ 1. (b)

An example in which there are two optimal solutions if cð�Þ ¼ 0:5

Comparing genomes with rearrangements and segmental duplications i335

http://msoar.cs.ucr.edu/

B is then defined as the ratio between the number of true orthology

pairs in B and the number of assessable pairs in B.

For each parameter configuration, we simulate 10 instances and

compute the average sensitivity, specificity and accuracy for both

methods. The performance of the two methods is shown in

Figures 8–10, where the parameters L 2 f1; 2;5g and D ranges from

250 to 2000. First, we can observe that both methods get very high

sensitivity (above 90% on all configurations). However, MSOAR

gets relatively low specificity. One reason for this is that MSOAR

uses unit cost for both rearrangements and single-gene duplications.

According to the discussion in Section 5, unit cost for all operations

might misclassify in-paralogs. Second, as D increases, the perform-

ance of both methods decreases. This is because the number of DCJs

is highly positively correlated to the difficulty of the problem. When

D�500, i.e. roughly 10% of the size of the simulated genome

(which is usually the case for real genomes, see Table 2 columns

d(B) for some examples), we can see that our method almost gets

perfect performance. Third, observe that MSOAR is very sensitive

to L even when D is very small. This might be because the evolution-

ary model for in-paralogs in MSOAR is single-gene duplication,

which creates trouble when genomes contain long segmental dupli-

cations. Finally, our method outperforms MSOAR on all the

configurations.

6.2 Results on biological datasets
We compare both methods on five mammalian species, human

(H.s.), gorilla (G.g.), orangutan (P.a.), mouse (M.m.) and rat (R.n.).

For each species, we collect all the protein-coding genes and down-

load their positions on the chromosomes and the Ensembl gene fam-

ily names from Ensembl (http://www.ensembl.org). Two genes are

considered as homologous if they have the same Ensembl gene fam-

ily name. Since the tandemly arrayed genes (TAGs) have a different

evolutionary model from segmental duplications, we merge each

group of TAGs into only one gene through only keeping the first

gene in the group while removing all the following ones.

We do the pairwise comparison for all five species, and for each

pair of species, we run both methods to obtain triples (S, T, B). We

use the same accuracy defined in Section 6.1 to evaluate B. To com-

pute the accuracy, we use the gene symbols (HGNC symbols for pri-

mate genes, MGI symbols for mouse genes and RGD symbols for rat

genes, downloaded from Ensembl) to define true orthology pairs:

those gene pairs that have the same gene symbol form the set of true

orthology pairs for each pair of species. We do not have annotation

data to serve as gold standard positive in-paralogs (we cannot just

regard those genes that are not in the true orthology pairs as gold

standard positive in-paralogs, since many genes have not yet been

assigned a valid gene symbol). Thus, we are not able to compute the

sensitivity and specificity of (S, T).

Fig. 8. Sensitivity of the inferred in-paralogs. The solid lines and dashed lines

track our method and MSOAR, respectively. The circles, triangles and dia-

monds track L¼ 1, L¼2 and L¼ 5, respectively

Fig. 9. Specificity of the inferred in-paralogs

Fig. 10. Accuracy of the inferred orthologs

Table 1. Comparison with MSOAR on accuracy

Species pairs

Assessable Accuracy

Time
MSOAR ILP MSOAR (%) ILP (%)

G.g. and H.s. 14 898 14 807 98.9 99.1 43

G.g. and M.m. 12 946 12 923 98.7 99.0 100

G.g. and P.a. 11 308 11 262 98.7 99.0 71

G.g. and R.n. 10 831 10 779 97.2 98.0 292

H.s. and M.m. 14 030 13 989 99.1 99.3 61

H.s. and P.a. 12 004 11 955 99.1 99.3 32

H.s. and R.n. 11 748 11 685 97.5 98.1 127

M.m. and P.a. 10 574 10 537 98.9 99.3 68

M.m. and R.n. 12 332 12 280 97.7 98.2 130

R.n. and P.a. 8788 8745 97.6 98.2 157

Bold values highlight larger accuracy. The last column shows the running

time of MSOAR (in min).

Table 2. Comparison with MSOAR on inferred operations and total

score

Species pairs

jSj þ jTj d(B) Total cost

MSOAR ILP MSOAR ILP MSOAR ILP

G.g. and H.s. 1738 1962 670 361 1973.50 1832.50

G.g. and M.m. 2183 2369 1214 891 2851.25 2667.75

G.g. and P.a. 1985 2259 896 530 2384.75 2224.25

G.g. and R.n. 3389 3620 1969 1394 4510.75 4109.00

H.s. and M.m. 1320 1381 909 743 1899.00 1778.75

H.s. and P.a. 1336 1444 497 306 1499.00 1389.00

H.s. and R.n. 2897 2885 1366 1069 3538.75 3232.75

M.m. and P.a. 1731 1825 906 707 2204.25 2075.75

M.m. and R.n. 2621 2739 1176 763 3141.75 2817.25

R.n. and P.a. 3109 3208 1535 1101 3866.75 3507.00

i336 M.Shao and B.M.E.Moret

http://www.ensembl.org

The comparison on accuracy is shown in Table 1. We can observe

that both methods have very high accuracy, indicating that the inferred

orthology pairs from gene order data mostly agree with the annotations.

On the other hand, our method gets higher accuracy than MSOAR on

all the 10 pairs. The running time of MSOAR is also shown in Table 1.

On average, for each instance, MSOAR takes 108min, which is on the

same level with our method (120 min for each instance).

In Table 2, we compare the number of operations and total score

inferred by the two methods to evaluate their ability as an optimizer.

First, we can see that our method gets more segmental duplications

and many fewer DCJs than MSOAR. One reason for this is that we

use smaller weight for segmental duplications. Second, our method

gets smaller total cost on all the 10 pairs. This shows the advantage

of our exact algorithm over the heuristic applied in MSOAR. Notice

that the total cost shown in Table 2 is computed using our weight,

i.e. dðBÞ þ 0:75 � ðjSj þ jTjÞ, for both methods. However, if the total

cost is computed using MSOAR’s weight, i.e. dðBÞ þ jSj þ jTj, our

method still has less total cost on all pairs.

In Table 3, we analyze the distribution of the length of the

inferred duplicated segments by our method. We can see that most

of them are single-gene duplications. We can also observe that the

rat genome contains more duplications than the other four genomes.

In Table 4, we analyze the composition of B returned by our

method. If a gene family is a singleton in both genomes, then this pair

of genes cannot be duplicated and must be mapped to each other by

definition. We call such pair a trivial pair. Observe that roughly half

of the pairs in B are trivial pairs (trivial column). We also show the

percentage of the pairs that are fixed through the preprocessing algo-

rithm (predetermined column). We can see that this preprocessing al-

gorithm is very efficient, which can fix almost all the nontrivial pairs,

leaving a very small portion (remaining column) that are to be deter-

mined by the ILP. This is because these species contain many shared

segments and many isolated genes (because most of the segmental du-

plications are single-gene duplications), and thus there are many opti-

mal substructures that can be identified by our algorithm.

7 Conclusion and discussion

We proposed an exact algorithm to compute a set of DCJs and seg-

mental duplications with minimum total cost between two given

genomes. As far as we know, this is the first exact algorithm to com-

pare two genomes in the presence of duplicated genes with both re-

arrangements and content-modifying events. This algorithm can be

applied to infer in-paralogs and orthologs, and the inferred results

were showed highly agreeing with the annotations.

The algorithm described in Section 4.2 has potential to extend.

For example, it can be directly used to test whether a general sub-

structure, rather than a single PHFSS, is optimal. Moreover, we

made a strong assumption that all genes in the related gene families

are isolated, which immediately makes the cost of the segmental du-

plications trivial to compare and thus allows us to focus on the num-

ber of cycles. In fact, we can relax this assumption, as long as we

can guarantee that the segmental duplications induced by the sub-

structure that is tested is optimal.

Although the evolutionary model used in our algorithm, i.e. DCJ plus

segmental duplication, is already quite general, there are some other

events, like tandem duplications, that cannot be explained by this model.

We will extend our algorithm for more general models in the future.

Conflict of Interest: none declared.

References

Bader,D. et al. (2001) A fast linear-time algorithm for inversion distance with

an experimental comparison. J. Comput. Biol., 8, 483–491.

Bang-Jensen,J. and Gutin,G. (1998) Alternating cycles and trails in 2-edge-col-

oured complete multigraphs. Discrete Math., 188, 61–72.

Bergeron,A. et al. (2006) A unifying view of genome rearrangements. In:

Proceedings of the 6th Workshop on Algorithms in Bioinformatics

(WABI’06), Volume 4175 of Lecture Notes in Computer Science. Springer

Verlag, Berlin, pp. 163–173.

Bergeron,A. et al. (2009) A new linear-time algorithm to compute the genomic

distance via the double cut and join distance. Theor. Comput. Sci., 410,

5300–5316.

Braga,M. et al. (2010) Genomic distance with DCJ and indels. In:

Proceedings of the 10th Workshop on Algorithms in Bioinformatics

(WABI’10), Volume 6293 of Lecture Notes in Computer Science. Springer

Verlag, Berlin, pp. 90–101.

Braga,M. et al. (2011) Double cut and join with insertions and deletions.

J. Comput. Biol., 18, 1167–1184.

Chen,X. (2010) On sorting permutations by double-cut-and-joins. In:

Proceedings of the 16th Conference On Computing and Combinatorics

(COCOON’10), volume 6196 of Lecture Notes in Computer Science.

Springer Verlag, Berlin, pp. 439–448.

Chen,X. et al. (2005) Assignment of orthologous genes via genome rearrange-

ment. ACM/IEEE Trans. Comput. Biol. Bioinform., 2, 302–315.

Dewey,C. (2011) Positional orthology: putting genomic evolutionary relation-

ships into context. Brief. Bioinform., 12, 401–412.

El-Mabrouk,N. (2001) Sorting signed permutations by reversals and inser-

tions/deletions of contiguous segments. J. Discrete Algorithms, 1, 105–122.

Fu,Z. et al. (2007) MSOAR: a high-throughput ortholog assignment system

based on genome rearrangement. J. Comput. Biol., 14, 1160–1175.

Gu,W. et al. (2008) Mechanisms for human genomic rearrangements.

Pathogenetics, 1, 4.

Hannenhalli,S. and Pevzner,P. (1995) Transforming cabbage into turnip

(polynomial algorithm for sorting signed permutations by reversals).

In: Proceedings of the 27th Annual ACM Symposium Theory of Computing

(STOC’95). ACM Press, New York, pp. 178–189.

Table 3. Distribution of the length of the segments in S and T

Species pairs S1 S2 S�3 jSj T1 T2 T�3 jTj

G.g. and H.s. 98.7 1.2 0.0 1347 95.2 4.3 0.3 615

G.g. and M.m. 98.5 1.3 0.1 1421 96.7 2.9 0.3 948

G.g. and P.a. 97.9 1.8 0.1 1579 98.8 1.1 0.0 680

G.g. and R.n. 98.1 1.6 0.2 1377 94.9 3.7 1.2 2243

H.s. and M.m. 94.8 4.9 0.1 563 96.2 3.5 0.2 818

H.s. and P.a. 93.9 4.8 1.2 807 99.3 0.4 0.1 637

H.s. and R.n. 94.9 4.2 0.7 631 95.3 3.2 1.3 2254

M.m. and P.a. 96.0 3.3 0.6 1109 99.1 0.5 0.2 716

M.m. and R.n. 95.5 3.5 0.9 648 94.5 3.5 1.8 2091

R.n. and P.a. 95.2 3.5 1.2 2472 99.0 0.6 0.2 736

Sk (respectively, Tk) contains the percentage of the segments of length k in

S (respectively, T).

Table 4. Composition of B

Species pairs Trivial (%) Predetermined (%) Remaining (%) jBj

G.g. and H.s. 51.5 47.9 0.5 16 213

G.g. and M.m. 48.7 49.5 1.6 15 015

G.g. and P.a. 50.7 48.5 0.7 15 271

G.g. and R.n. 46.3 50.5 3.0 14 983

H.s. and M.m. 51.0 47.5 1.3 15 572

H.s. and P.a. 52.3 47.1 0.4 15 481

H.s. and R.n. 48.5 49.5 1.8 15 379

M.m. and P.a. 50.0 48.6 1.2 14 620

M.m. and R.n. 48.9 49.4 1.6 16 347

R.n. and P.a. 47.7 50.1 2.0 14 534

Comparing genomes with rearrangements and segmental duplications i337

Holloway,P. et al. (2013) Ancestral genome organization: an alignment ap-

proach. J. Comput. Biol., 20, 280–295.

Kahn,C. and Raphael,B. (2008) Analysis of segmental duplications via dupli-

cation distance. Bioinformatics, 24, i133–i138.

Kahn,C. et al. (2010) Parsimony and likelihood reconstruction of human seg-

mental duplications. Bioinformatics, 26, i446–i452.

Moret,B. et al. (2013) Rearrangements in phylogenetic inference: compare,

model, or encode? In: Chauve,C. et al. (eds.) Models and Algorithms for

Genome Evolution, Volume 19 of Computational Biology. Springer Verlag,

Berlin, pp. 147–172.

Shao,M. and Lin,Y. (2012) Approximating the edit distance for genomes with

duplicate genes under DCJ, insertion and deletion. BMC Bioinformatics,

13(Suppl 19), S13.

Shao,M. et al. (2014) An exact algorithm to compute the DCJ distance for

genomes with duplicate genes. In: Proceedings of the 18th International

Conference on Computations of Molecular Biology (RECOMB’14),

Volume 8394 of Lecture Notes in Computer Science. Springer Verlag,

Berlin, pp. 280–292.

Yancopoulos,S. et al. (2005) Efficient sorting of genomic permutations by trans-

location, inversion and block interchange. Bioinformatics, 21, 3340–3346.

i338 M.Shao and B.M.E.Moret

	l
	l
	btv229-TF1
	btv229-TF2

