5 research outputs found

    Ammonia effects on proton conductivity properties of coordination polymers

    Get PDF
    Crystalline metal phosphonates are referred to as a type of structurally versatile coordination polymers [1]. Many of them contain guest molecules (H2O, heterocyclics, etc.), acidic sites and, furthermore, their structure can be also amenable for post‐synthesis modifications in order to enhance desired properties [2]. In the present work, we examine the relationships between crystal structure and proton conductivity for several metal phosphonates derive from multifunctional ligands, such as 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA) [3] and 2-hydroxyphosphonoacetic acid (H3HPAA). Crystalline divalent metal derivatives show a great structural diversity, from 1D to 3D open-frameworks, possessing hydrogen-bonded water molecules and acid groups. These solids present a proton conductivity range between 7.2·10-6 and 1.3·10−3 S·cm-1. Upon exposure to ammonia vapor, from an aqueous solution, solid state transformations are observed accompanied of enhance proton conductivities. The stability of these solids under different environment conditions (temperature and relative humidities) as well as the influence of the ammonia adsorption on the proton conduction properties of the resulting solids will be discussed.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Proton conductivity of multifunctional metal phosphonate frameworks

    Get PDF
    Metal phosphonates exhibit attractive characteristics for proton conductivity, such as tunable functionality, chemical and thermal stability and the existence of H-bond networks with acidic protons within their structure.1 In the present work, we examine the relationship between crystal structure and proton conductivity for several metal (mono-, di- and tri-valent) phosphonates containing rigid: (5-(dihydroxyphosphoryl)isophthalic acid, PiPhtA and 2-hydroxyphosphonoacetic acid, HPAA) or flexible: (hexa- or octamethylenediamine-N,N,Nâ€Č,Nâ€Č-tetrakis(methylenephosphonic acid, H8HDTMP or H8ODTMP) multifunctional ligands. The crystalline hybrid derivatives prepared show a great structural diversity, from 1D to 3D open-frameworks possessing hydrogen-bonded water molecules and phosphonic and carboxylic acid groups. The rigid 3D framework of Ca-PiPhtA, that exhibits a proton conductivity of 5.7‱10-4 S/cm as synthesized, transforms into a layered compound upon exposure to ammonia vapors2 with increased proton conductivity (6.6‱10-3 S/cm). The flexible frameworks of magnesium or lanthanide phosphonates, with 1D channels, present conductivities higher than 10-3 S/cm. Their activation energies fall in the range corresponding to a Grotthuss mechanism.3,4 For M(I)-HPAA solids conductivities up to 5.6‱10-3 S/cm were measured. References 1. P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, Chem. Soc. Rev. 43 (2014) 5913. 2. M. Bazaga-GarcĂ­a, R.M.P. Colodrero, M. Papadaki, P. Garczarek, J. ZoƄ, P. Olivera-Pastor, E.R. Losilla, L. LeĂłn-Reina, M.A.G. Aranda, D. Choquesillo-Lazarte, K.D. Demadis, A. Cabeza, J. Amer. Chem. Soc. 136 (2014) 5731. 3. R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla, D. Hernández-Alonso, M.A.G. Aranda, L. Leon-Reina, J. Rius, K.D. Demadis, B. Moreau, D. Villemin, M. Palomino, F. Rey, A. Cabeza, Inorg. Chem. 51 (2012) 7689. 4. R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla, M.A.G. Aranda, L. Leon-Reina, M. Papadaki, A.C. McKinlay, R.E. Morris, K.D. Demadis, A. Cabeza, Dalton Trans. 41 (2012) 4045.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech. Junta de AndalucĂ­a, Proyecto Excelencia FQM-1656. Ministerio de EconomĂ­a y Competitividad, MAT2013-41836-

    Structural variability in M2+ 2-hydroxyphosphonoacetate moderate proton conductors

    Get PDF
    The structural variability of two series of Mg2+- and Zn2+- 2-hydroxyphosphonoacetates have been studied in the range of 25–80 °C and 95 % relative humidity in order to correlate the structure with the proton conductivity properties. In addition to selected previously reported 1D, 2D and 3D materials, a new compound, KZn6(OOCCH(OH)PO3)4(OH)·5H2O (KZn6-HPAA-3D), has been prepared and thoroughly characterized. The crystal structure of this solid, solved ab initio from synchrotron X-ray powder diffraction data, consists of a negatively charged 3D framework with K+ ions, as compensating counterions. It also contains water molecules filling the cavities in contrast to the potassium-free 3D anhydrous NH4Zn(OOCCH(OH)PO3) (NH4Zn-HPAA-3D). In the range of temperature studied, the 1D materials exhibit a 1D → 2D solid-state transition. At 80 °C and 95 % RH, the 2D solids show moderate proton conductivities, between 2.1 × 10 − 5 S·cm − 1 and 6.7 × 10− 5 S·cm− 1. The proton conductivity is slightly increased by ammonia adsorption up to 2.6 × 10 − 4 S·cm − 1, although no ammonia intercalation was observed. As synthesized KZn6-HPAA-3D exhibits a low proton conductivity, 1.6 × 10− 6 S·cm− 1, attributed to the basic character of the framework and a low mobility of water molecules. However, this solid transforms to the 2D phase, Zn(OOCCH(OH)PO3H)·2H2O, upon exposure to dry HCl(g), which enhances the proton conductivity with respect to the as-synthesized 2D material (4.5 × 10− 4 S·cm− 1). On the other hand, NH4Zn-HPAA-3D exhibited a higher proton conductivity, 1.4 × 10− 4 S·cm− 1, than the K+ analog.Proyecto MAT2013-41836-R del MINECO y proyecto P12-FQM-1656 de la Junta de AndalucĂ­
    corecore