6 research outputs found

    NFV Orchestration over Disaggregated Metro Optical Networks with End-to-End Multi-Layer Slicing enabling Crowdsourced Live Video Streaming

    Get PDF
    Network infrastructure must support emerging applications, fulfill 5G requirements, and respond to the sudden increase of societal need for remote communications. Remarkably, crowdsourced live video streaming (CLVS) challenges operators' infrastructure with tides of users attending major sport or public events that demand high bandwidth and low latency jointly with computing capabilities at the networks' edge. The Metro-Haul project entered the scene proposing a cost-effective, agile, and disaggregated infrastructure for the metro segment encompassing optical and packet resources jointly with computing capabilities. Recently, a major Metro-Haul outcome took the form of a field trial of network function virtualization (NFV) orchestration over the multi-layer packet and disaggregated optical network testbed that demonstrated a CLVS use case. We showcased the average service creation time below 5 min, which met the key performance indicator as defined by the 5G infrastructure public private partnership. In this paper, we expand our field trial demonstration with a detailed view of the Metro-Haul testbed for the CLVS use case, the employed components, and their performance. The throughput of the service is increased from approximately 9.6 Gbps up to 35 Gbps per virtual local area network with high-performance VNFs based on single-root input/output virtualization technology

    Functional Wnt Signaling Is Increased in Idiopathic Pulmonary Fibrosis

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myo)fibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (q)RT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII) cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myo)fibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling may be involved in epithelial cell injury and hyperplasia, as well as impaired epithelial-mesenchymal cross-talk in IPF. Thus, modification of Wnt signaling may represent a therapeutic option in IPF

    Hepatitis B virus infection in children

    No full text

    Listing of Protein Spectra

    No full text
    corecore