28 research outputs found
Simultaneous determination of copper, mercury and zinc in water with a tailored fluorescent bipyridine ligand entrapped in silica sol-gel
A novel fluorescent ligand, (4-[(E)-2-(4'-methyl-2,2'-bipyridin-4-yl)vinyl]phenol) (abbreviated BSOH), has been designed and prepared for simultaneous determination of heavy metals in water. Its photophysical and photochemical properties in the absence and in the presence of Cd(II), Cu(II), Hg(II), Ni(II) and Zn(II) were determined, and the respective complexation constants (7.4 x 10(3)-2.8 x 10(8) l mol(-1)) and stoichiometries were extracted thereof. The Stern-Volmer emission intensity and lifetime plots indicate an efficient static quenching of the indicator dye with the heavy metals. The BSOH fluorescent reagent has been successfully immobilised in a silica sol-gel matrix for automation of the analytical method, and the sensing phase demonstrated a reversible response to Cu(II), Hg(II) and Zn(II) but not to Cd(II) and Ni(II). Characterisation of the sensor showed that its response to those heavy metals is linear in the 2.5 to 50 mu mol l(-1) range, with a response time (t (90)) on the order of 100 min, providing detection limits of 9.0 x 10(-7), 4.7 x 10(-7) and 2.9 x 10(-7) mol l (-1) for Zn(II), Cu(II) and Hg(II), respectively. Due to the stability of the immobilised ligand, which presented no leaching from the sol-gel matrix, the simultaneous determination of the three cations in water was feasible by employing multivariate calibration techniques coupled to fluorescence quenching measurements. The sensor was validated with recovery tests by addition of Cu(II) and Hg(II) ions to spring waters, providing results with standard errors lower than 4.1 mu mol l (-1).398418583127313
Fluorescent ion-imprinted polymers for selective Cu(II) optosensing
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)This paper describes the synthesis and characterization of a fluorescent ion-imprinted polymer (IIP) for selective determination of copper ions in aqueous samples. The IIP has been prepared using a novel functional monomer, 4-[(E)-2-(4'-methyl-2,2'-bipyridin-4-yl)vinyl]phenyl methacrylate (abbreviated as BSOMe) that has been spectroscopically characterized in methanolic solution, in the absence and in the presence of several metal ions, including Cd(II), Cu(II), Hg(II), Ni(II), Pb(II), and Zn(II). The stability constant (2.04 x 10(8) mol(-2) l(2)) and stoichiometry (L2M) of the BSOMe complex with Cu(II) were extracted thereof. Cu(II)-IIPs were prepared by radical polymerization using stoichiometric amounts of the fluorescent monomer and the template metal ion. The resulting cross-linked network did not show any leaching of the immobilized ligand allowing determination of Cu(II) in aqueous samples by fluorescence quenching measurements. Several parameters affecting optosensor performance have been optimized, including sample pH, ionic strength, or polymer regeneration for online analysis of water samples. The synthesized Cu(II)-IIP exhibits a detection limit of 0.04 mu mol l(-1) for the determination of Cu(II) in water samples with a reproducibility of 3%, exhibiting an excellent selectivity towards the template ion over other metal ions with the same charge and close ionic radius. The IIP-based optosensor has been repeatedly used and regenerated for more than 50 cycles without a significant decrease in the luminescent properties and binding affinity of the sensing phase.4021032533260Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Spanish Ministry of EducationMinistry of Science and Innovation [PHB2005-0030-PC, CTQ2009-14565-C03]Complutense University [GR58-08-910072]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES [CAPES/DGU 125/06]Ministry of Science and Innovation [PHB2005-0030-PC, CTQ2009-14565-C03]Complutense University [GR58-08-910072
Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays
The interaction of seven novel fluorescent labeled beta-lactams with a library of six polymer materials molecularly imprinted (MI) with penicillin G (PenG) has been evaluated using both radioactive and fluorescence competitive assays. The highly fluorescent competitors (emission quantum yields of 0.4-0.95) have been molecularly engineered to contain pyrene or dansyl labels while keeping intact the 6-aminopenicillanic acid moiety for efficient recognition by the cross-linked polymers. Pyrenemethylacetamidopenicillanic acid (PAAP) is the tagged antibiotic that provides the highest selectivity when competing with PenG for the specific binding sites in a MI polymer prepared with methacrylic acid and trimethylolpropane trimethacrylate (10:15 molar ratio) in acetonitrile in the presence of PenG. Molecular modeling shows that recognition of the fluorescent analogues of PenG by the MI material is due to a combination of size and shape selectivity and demonstrates how critical the choice of label and tether chain is. PAAP has been applied to the development of a fluorescence competitive assay for PenG analysis with a dynamic range of 3-890 mu M in 99:1 acetonitrile-water solution. Competitive binding studies demonstrate various degrees of cross-reactivity for some antibiotics derived from 6-aminopenicillanic acid, particularly amoxicillin, ampicillin, and penicillin V (but not oxacillin, cloxacillin, dicloxacillin, or nafcillin). Other antibiotics, such as chloramphenicol, tetracycline, or cephapirin, do not compete with PAAP for binding to the imprinted polymer. The MI assay has successfully been tested for PenG analysis in a pharmaceutical formulation
Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry
Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b, d] pyran-6- one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (lambda(ex)= 258 nm;lambda(em) = 440 nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8 mu g kg(-1) range in both samples