24,444 research outputs found

    Quantum Entanglement in (d1)(d-1)-Spherium

    Full text link
    There are very few systems of interacting particles (with continuous variables) for which the entanglement of the concomitant eigenfunctions can be computed in an exact, analytical way. Here we present analytical calculations of the amount of entanglement exhibited by ss-states of \emph{spherium}. This is a system of two particles (electrons) interacting via a Coulomb potential and confined to a (d1)(d-1)-sphere (that is, to the surface of a dd-dimensional ball). We investigate the dependence of entanglement on the radius RR of the system, on the spatial dimensionality dd, and on energy. We find that entanglement increases monotonically with RR, decreases with dd, and also tends to increase with the energy of the eigenstates. These trends are discussed and compared with those observed in other two-electron atomic-like models where entanglement has been investigated.Comment: 14 pages, 6 figures. J. Phys. A (2015). Accepte

    Oscillatory dynamics of a superconductor vortex lattice in high amplitude ac magnetic fields

    Get PDF
    In this work we study by ac susceptibility measurements the evolution of the solid vortex lattice mobility under oscillating forces. Previous work had already shown that in YBCO single crystals, below the melting transition, a temporarily symmetric magnetic ac field (e.g. sinusoidal, square, triangular) can heal the vortex lattice (VL) and increase its mobility, but a temporarily asymmetric one (e.g. sawtooth) of the same amplitude can tear the lattice into a more pinned disordered state. In this work we present evidence that the mobility of the VL is reduced for large vortex displacements, in agreement with predictions of recent simulations. We show that with large symmetric oscillating fields both an initially ordered or an initially disordered VL configuration evolve towards a less mobile lattice, supporting the scenario of plastic flow.Comment: 5 pages, 4 figures. To appear in Phys. Rev.

    Fluctuation-induced traffic congestion in heterogeneous networks

    Get PDF
    In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion -- a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible.Comment: 4 pages, 3 figure

    Coherent State Description of the Ground State in the Tavis-Cummings Model and its Quantum Phase Transitions

    Full text link
    Quantum phase transitions and observables of interest of the ground state in the Tavis-Cummings model are analyzed, for any number of atoms, by using a tensorial product of coherent states. It is found that this "trial" state constitutes a very good approximation to the exact quantum solution, in that it globally reproduces the expectation values of the matter and field observables. These include the population and dipole moments of the two-level atoms and the squeezing parameter. Agreement in the field-matter entanglement and in the fidelity measures, of interest in quantum information theory, is also found.The analysis is carried out in all three regions defined by the separatrix which gives rise to the quantum phase transitions. It is argued that this agreement is due to the gaussian structure of the probability distributions of the constant of motion and the number of photons. The expectation values of the ground state observables are given in analytic form, and the change of the ground state structure of the system when the separatrix is crossed is also studied.Comment: 38 pages, 16 figure

    Energy landscape of a simple model for strong liquids

    Full text link
    We calculate the statistical properties of the energy landscape of a minimal model for strong network-forming liquids. Dynamics and thermodynamic properties of this model can be computed with arbitrary precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the energy distribution are the landscape signatures of strong liquid behavior. Differences from fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle bonds, and to the intrinsic degeneracy of topologically disordered networks.Comment: Revised versio

    On the Saturation of Astrophysical Dynamos: Numerical Experiments with the No-cosines flow

    Get PDF
    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and study the dynamo's mode of operation during both the linear and non-linear saturation regime: It turns out that in addition to a high growth rate in the linear regime, the dynamo saturates at a level significantly higher than normal turbulent dynamos, namely at exact equipartition when the magnetic Prandtl number is on the order of unity. Visualization of the magnetic and velocity fields at saturation will help us to understand some of the aspects of the non-linear dynamo problem.Comment: 8 pages, 5 figures, submitted to the proceedings of "Space Climate 1" to be peer-reviewed to Solar Physic
    corecore