41,874 research outputs found

    The physics of twisted magnetic tubes rising in a stratified medium: two dimensional results

    Get PDF
    The physics of a twisted magnetic flux tube rising in a stratified medium is studied using a numerical MHD code. The problem considered is fully compressible (no Boussinesq approximation), includes ohmic resistivity, and is two dimensional, i.e., there is no variation of the variables in the direction of the tube axis. We study a high plasma beta case with small ratio of radius to external pressure scaleheight. The results obtained can therefore be of relevance to understand the transport of magnetic flux across the solar convection zone.Comment: To be published in ApJ, Vol. 492, Jan 10th, 1998; 25 pages, 16 figures. NEW VERSION: THE PREVIOUS ONE DIDN'T PRINT CORRECTLY. The style file overrulehere.sty is include

    Phase Space Reduction for Star-Products: An Explicit Construction for CP^n

    Full text link
    We derive a closed formula for a star-product on complex projective space and on the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)) using a completely elementary construction: Starting from the standard star-product of Wick type on Cn+1{0}C^{n+1} \setminus \{ 0 \} and performing a quantum analogue of Marsden-Weinstein reduction, we can give an easy algebraic description of this star-product. Moreover, going over to a modified star-product on Cn+1{0}C^{n+1} \setminus \{ 0 \}, obtained by an equivalence transformation, this description can be even further simplified, allowing the explicit computation of a closed formula for the star-product on \CP^n which can easily transferred to the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)).Comment: LaTeX, 17 page

    Spectral changes in layered ff-electron systems induced by Kondo hole substitution in the boundary-layer

    Get PDF
    We investigate the effect of disorder on the dynamical spectrum of layered ff-electron systems. With random dilution of ff-sites in a single Kondo insulating layer, we explore the range and extent to which Kondo hole incoherence can penetrate into adjacent layers. We consider three cases of neighboring layers: band insulator, Kondo insulator and simple metal. The disorder-induced spectral weight transfer, used here for quantification of the proximity effect, decays algebraically with distance from the boundary layer. Further, we show that the spectral weight transfer is highly dependent on the frequency range considered as well as the presence of interactions in the clean adjacent layers. The changes in the low frequency spectrum are very similar when the adjacent layers are either metallic or Kondo insulating, and hence are independent of interactions. In stark contrast, a distinct picture emerges for the spectral weight transfers across large energy scales. The spectral weight transfer over all energy scales is much higher when the adjacent layers are non-interacting as compared to when they are strongly interacting Kondo insulators. Thus, over all scales, interactions screen the disorder effects significantly. We discuss the possibility of a crossover from non-Fermi liquid to Fermi liquid behavior upon increasing the ratio of clean to disordered layers in particle-hole asymmetric systems.Comment: 14 pages, 9 figure

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table

    Bipartite all-versus-nothing proofs of Bell's theorem with single-qubit measurements

    Full text link
    If we distribute n qubits between two parties, which quantum pure states and distributions of qubits would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell's theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs for any number of qubits, and provide all distinct proofs up to n=7 qubits. Remarkably, there is only one distribution of a state of n=4 qubits, and six distributions, each for a different state of n=6 qubits, which allow these proofs.Comment: REVTeX4, 4 pages, 2 figure

    Entanglement properties of spin models in triangular lattices

    Full text link
    The different quantum phases appearing in strongly correlated systems as well as their transitions are closely related to the entanglement shared between their constituents. In 1D systems, it is well established that the entanglement spectrum is linked to the symmetries that protect the different quantum phases. This relation extends even further at the phase transitions where a direct link associates the entanglement spectrum to the conformal field theory describing the former. For 2D systems much less is known. The lattice geometry becomes a crucial aspect to consider when studying entanglement and phase transitions. Here, we analyze the entanglement properties of triangular spin lattice models by considering also concepts borrowed from quantum information theory such as geometric entanglement.Comment: 19 pages, 8 figure

    HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs

    Get PDF
    HuR/ELAVL1 is an RNA-binding protein involved in differentiation and stress response that acts primarily by stabilizing messenger RNA (mRNA) targets. HuR comprises three RNA recognition motifs (RRMs) where the structure and RNA binding of RRM3 and of full-length HuR remain poorly understood. Here, we report crystal structures of RRM3 free and bound to cognate RNAs. Our structural, NMR and biochemical data show that RRM3 mediates canonical RNA interactions and reveal molecular details of a dimerization interface localized on the α-helical face of RRM3. NMR and SAXS analyses indicate that the three RRMs in full-length HuR are flexibly connected in the absence of RNA, while they adopt a more compact arrangement when bound to RNA. Based on these data and crystal structures of tandem RRM1,2-RNA and our RRM3-RNA complexes, we present a structural model of RNA recognition involving all three RRM domains of full-length HuR. Mutational analysis demonstrates that RRM3 dimerization and RNA binding is required for functional activity of full-length HuR in vitro and to regulate target mRNAs levels in human cells, thus providing a fine-tuning for HuR activity in vivo.España, MINECO BFU2015-71017España, Junta de Andalucía CVI-BIO198; P11-CVI7216 to I.D.M
    corecore