5,173 research outputs found

    Logarithmic Relaxation in a Kinetically Constrained Model

    Get PDF
    We present Monte Carlo simulations in a modification of the north-or-east-or-front model recently investigated by Berthier and Garrahan [J. Phys. Chem. B 109, 3578 (2005)]. In this coarse-grained model for relaxation in supercooled liquids, the liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, with values 0 or 1 denoting respectively unexcited and excited local states in a mobility field. Change in local mobility (spin flip) for a given cell is permitted according to kinetic constraints determined by the mobilities of neighboring cells. In this work we keep the same kinetic constraints of the original model, but we introduce two types of cells (denoted as "fast'' and "slow'') with very different rates for spin flip. As a consequence, fast and slow cells exhibit very different relaxation times for spin correlators. While slow cells exhibit standard relaxation, fast cells display anomalous relaxation, characterized by a concave-to-convex crossover in spin correlators by changing temperature or composition. At intermediate state points logarithmic relaxation is observed over three time decades. These results display striking analogies with dynamic correlators reported in recent simulations on a bead-spring model for polymer blends.Comment: Major changes. To be published in Journal of Chemical Physic

    Static and dynamic contributions to anomalous chain dynamics in polymer blends

    Get PDF
    By means of computer simulations, we investigate the relaxation of the Rouse modes in a simple bead-spring model for non-entangled polymer blends. Two different models are used for the fast component, namely fully-flexible and semiflexible chains. The latter are semiflexible in the meaning that static intrachain correlations are strongly non-gaussian at all length scales. The dynamic asymmetry in the blend is strongly enhanced by decreasing temperature, inducing confinement effects on the fast component. The dynamics of the Rouse modes show very different trends for the two models of the fast component. For the fully-flexible case, the relaxation times exhibit a progressive deviation from Rouse scaling on increasing the dynamic asymmetry. This anomalous effect has a dynamic origin. It is not related to particular static features of the Rouse modes, which indeed are identical to those of the fully-flexible homopolymer, and are not modified by the dynamic asymmetry in the blend. On the contrary, in the semiflexible case the relaxation times exhibit approximately the same scaling behaviour as the amplitudes of the modes. This suggests that the origin of the anomalous dynamic scaling for semiflexible chains confined in the blend is esentially of static nature. We discuss implications of these observations for the applicability of theoretical approaches to chain dynamics in polymer blends.Comment: 15 pages (single-column), 6 figure

    Dynamic Arrest in Polymer Melts: Competition between Packing and Intramolecular Barriers

    Get PDF
    We present molecular dynamics simulations of a simple model for polymer melts with intramolecular barriers. We investigate structural relaxation as a function of the barrier strength. Dynamic correlators can be consistently analyzed within the framework of the Mode Coupling Theory (MCT) of the glass transition. Control parameters are tuned in order to induce a competition between general packing effects and polymer-specific intramolecular barriers as mechanisms for dynamic arrest. This competition yields unusually large values of the so-called MCT exponent parameter and rationalize qualitatively different observations for simple bead-spring and realistic polymers. The systematic study of the effect of intramolecular barriers presented here also establishes a fundamental difference between the nature of the glass transition in polymers and in simple glass-formers.Comment: 4 pages, 3 figures, 2 table

    Relaxation Scenarios in a Mixture of Large and Small Spheres: Dependence on the Size Disparity

    Get PDF
    We present a computational investigation on the slow dynamics of a mixture of large and small soft spheres. By varying the size disparity at a moderate fixed composition different relaxation scenarios are observed for the small particles. For small disparity density-density correlators exhibit moderate stretching. Only small quantitative differences are observed between dynamic features for large and small particles. On the contrary, large disparity induces a clear time scale separation between the large and the small particles. Density-density correlators for the small particles become extremely stretched, and display logarithmic relaxation by properly tuning the temperature or the wavevector. Self-correlators decay much faster than density-density correlators. For very large size disparity, a complete separation between self- and collective dynamics is observed for the small particles. Self-correlators decay to zero at temperatures where density-density correlations are frozen. The dynamic picture obtained by varying the size disparity resembles features associated to Mode Coupling transition lines of the types B and A at, respectively, small and very large size disparity. Both lines might merge, at some intermediate disparity, at a higher-order point, to which logarithmic relaxation would be associated. This picture resembles predictions of a recent Mode Coupling Theory for fluids confined in matrixes with interconnected voids [V. Krakoviack, Phys. Rev. Lett. {\bf 94}, 065703 (2005)].Comment: Journal of Chemical Physics 125, 164507 (2006

    Anomalous Dynamic Arrest in a Mixture of Big and Small Particles

    Full text link
    We present molecular dynamics simulations on the slow dynamics of a mixture of big and small soft-spheres with a large size disparity. Dynamics are investigated in a broad range of temperature and mixture composition. As a consequence of large size disparity, big and small particles exhibit very different relaxation times. As previously reported for simple models of short-ranged attractive colloids and polymer blends, several anomalous dynamic features are observed: i) sublinear behavior for mean squared displacements, ii) concave-to-convex crossover for density-density correlators, by varying temperature or wavevector, iii) logarithmic decay for specific wavevectors of density-density correlators. These anomalous features are observed over time intervals extending up to four decades, and strongly resemble predictions of the Mode Coupling Theory (MCT) for state points close to higher-order MCT transitions, which originate from the competition between different mechanisms for dynamic arrest. For the big particles we suggest competition between soft-sphere repulsion and depletion effects induced by neighboring small particles. For the small particles we suggest competition between bulk-like dynamics and confinement, respectively induced by neighboring small particles and by the slow matrix of big particles. By increasing the size disparity, a new relaxation scenario arises for the small particles. Self-correlators decay to zero at temperatures where density-density correlations are frozen. The behavior of the latters resembles features characteristic of type-A MCT transitions, defined by a zero value of the critical non-ergodicity parameter.Comment: Version 2. Added major new result
    • …
    corecore