26,355 research outputs found

    Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes

    Full text link
    By using a theoretical formalism able to work in both real and k-spaces, the physical origin of the phenomenon of extraordinary transmission of light through quasi-periodic arrays of holes is revealed. Long-range order present in a quasiperiodic array selects the wavevector(s) of the surface electromagnetic mode(s) that allows an efficient transmission of light through subwavelength holes.Comment: 4 pages, 4 figure

    Quantum Entanglement in (d−1)(d-1)-Spherium

    Get PDF
    There are very few systems of interacting particles (with continuous variables) for which the entanglement of the concomitant eigenfunctions can be computed in an exact, analytical way. Here we present analytical calculations of the amount of entanglement exhibited by ss-states of \emph{spherium}. This is a system of two particles (electrons) interacting via a Coulomb potential and confined to a (d−1)(d-1)-sphere (that is, to the surface of a dd-dimensional ball). We investigate the dependence of entanglement on the radius RR of the system, on the spatial dimensionality dd, and on energy. We find that entanglement increases monotonically with RR, decreases with dd, and also tends to increase with the energy of the eigenstates. These trends are discussed and compared with those observed in other two-electron atomic-like models where entanglement has been investigated.Comment: 14 pages, 6 figures. J. Phys. A (2015). Accepte

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table
    • …
    corecore