1,005 research outputs found

    Replicating the Networking, Mentoring and Venture Creation Benefits of Entrepreneurship Centres on a Shoestring: A Student-centred Approach to Entrepreneurship Education and Venture Creation

    Get PDF
    As support for both university-level entrepreneurial education and the use of experiential learning methods to foster student entrepreneurs increases, so too have the number of university-established or affiliated entrepreneurship centers. The activity at the center of this study aimed to combine experiential learning methods with assets associated with entrepreneurship centers, including venture creation, networking, and mentoring. Students were invited to participate in a competition wherein they were guided through the business creation process and pitched their ideas to investor judges who chose the winner and provided capital start-up funding and consulting. This research puts forth that university faculty at institutions without entrepreneurship centers can organize experiences to provide the benefits of entrepreneurship centers. The study used interviews to find that many of the benefits of entrepreneurship centers were able to be replicated using this method. The project is outlined, outcomes are analyzed, and the results and lessons learned are discussed

    Central nervous system demyelination associated with etanercept in a 51 years old woman

    Get PDF
    There are few case reports documenting a new onset of demyelinating processes in patients receiving anti-tumour necrosis factor alpha therapy (anti-TNF alpha) for chronic inflammatory arthropathies. Whether anti-TNF alpha therapy induces new onset demyelination or just exacerbates pre-existing latent multiple sclerosis is not fully understood. We are reporting a 51-year-old woman without a prior history of multiple sclerosis, who developed demyelinating brain lesions three months after starting Etanercept. Her symptoms partially resolved on cessation of the drug. Our case was unusual compared to some previous case reports, as the patient's age at presentation was beyond that for idiopathic multiple sclerosis. This may strengthen the hypothesis of a causal relationship between new onset demyelination and Etanercept; however, exacerbation of pre-existing demyelinating process by Etanercept in this patient still cannot be totally excluded. We recommend doing magnetic resonance imaging (MRI) of the brain before starting patients on anti-TNF alpha therapy to exclude latent demyelination. In addition, new onset demyelination following anti-TNF alpha therapy should be reported and studied thoroughly as this may yield a significant advancement in our understanding of the pathogenesis of multiple sclerosis. Long-term follow-up of these cases is also important to determine the long-term prognosis and the rate of relapse of demyelinating process in this group of patients

    High Affinity Human Antibody Fragments to Dengue Virus Non-Structural Protein 3

    Get PDF
    Dengue virus is the most prevalent mosquito transmitted infectious disease in humans and is responsible for febrile disease such as dengue fever, dengue hemorrhagic fever and dengue shock syndrome. Dengue non-structural protein 3 (NS3) is an essential, multifunctional, viral enzyme with two distinct domains; a protease domain required for processing of the viral polyprotein, and a helicase domain required for replication of the viral genome. In this study ten unique human antibody fragments (Fab) that specifically bind dengue NS3 were isolated from a diverse library of Fab clones using phage display technology. The binding site of one of these antibodies, Fab 3F8, has been precisely mapped to the third α-helix within subdomain III of the helicase domain (amino acids 526–531). The antibody inhibits the helicase activity of NS3 in biochemical assays and reduces DENV replication in human embryonic kidney cells. The antibody is a valuable tool for studying dengue replication mechanisms

    Guidelines for the proper use of etanercept in Japan

    Get PDF
    Application of biological agents targeting inflammatory cytokines such as tumor necrosis factor-α (TNF-α) dramatically caused a paradigm shift in the treatment of rheumatoid arthritis (RA). Infliximab, a chimeric anti-TNF-α monoclonal antibody, has initially been introduced to Japan in 2003 and shown to be dramatically effective in alleviating arthritis refractory to conventional treatment. However, serious adverse events such as bacterial pneumonia, tuberculosis, and Pneumocystis jiroveci pneumonia were reported to be in relatively high incidence; i.e., 2%, 0.3%, and 0.4%, respectively, in a strict postmarketing surveillance of an initial 4000 cases in Japan. Etancercept, a recombinant chimeric protein consisting of p75 TNF-α receptor and human IgG, was subsequently introduced to Japan in March of 2005. We therefore drew up treatment guidelines for the use of etanercept to avoid potential serous adverse events, since only approximately 150 cases have been included in the clinical study of etanercept in Japan. The guidelines were initially designed by the principal investigators (N.M, T.T., K.E.) of rheumatoid arthritis study groups of the Ministry of Health, Labor and Welfare (MHLW), Japan, and finally approved by the board of directors of the Japan College of Rheumatology. The MHLW assigned a duty to the pharmaceutical companies to perform a complete postmarketing surveillance of an initial 3000 cases to explore any adverse events, and this was performed according to the treatment guidelines shown in this article

    Localization and Capacitance Fluctuations in Disordered Au Nano-junctions

    Full text link
    Nano-junctions, containing atomic-scale gold contacts between strongly disordered leads, exhibit different transport properties at room temperature and at low temperature. At room temperature, the nano-junctions exhibit conductance quantization effects. At low temperatures, the contacts exhibit Coulomb-Blockade. We show that the differences between the room-temperature and low temperature properties arise from the localization of electronic states in the leads. The charging energy and capacitance of the nano-junctions exhibit strong fluctuations with applied magnetic field at low temperature, as predicted theoretically.Comment: 20 pages 8 figure

    Connective neck evolution and conductance steps in hot point contacts

    Full text link
    Dynamic evolution of the connective neck in Al and Pb mechanically controllable break junctions was studied during continuous approach of electrodes at bias voltages V_b up to a few hundred mV. A high level of power dissipation (10^-4 - 10^-3 W) and high current density (j > 10^10 A/cm^2) in the constriction lead to overheating of the contact area, electromigration and current-enhanced diffusion of atoms out of the "hot spot". At a low electrode approach rate (10 - 50 pm/s) the transverse dimension of the neck and the conductance of the junction depend on V_b and remain nearly constant over the approach distance of 10 - 30 nm. For V_b > 300 mV the connective neck consists of a few atoms only and the quantum nature of conductance manifests itself in abrupt steps and reversible jumps between two or more levels. These features are related to an ever changing number of individual conductance channels due to the continuous rearrangement in atomic configuration of the neck, the recurring motion of atoms between metastable states, the formation and breaking of isolated one-atom contacts and the switching between energetically preferable neck geometries.Comment: 21 pages 10 figure

    Crystal Structure of PhnF, a GntR-Family Transcriptional Regulator of Phosphate Transport in <em>Mycobacterium smegmatis</em>

    Get PDF
    Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201
    corecore