167 research outputs found

    Impact of water matrix on the removal of micropollutants by advanced oxidation technologies

    Get PDF
    Micropollutants (MPs) in the aquatic compartments are originated from many sources and particularly from the effluents of urban wastewater treatment plants (UWWTPs). Advanced oxidation technologies (AOTs) usually applied after biological processes, have recently emerged as effective tertiary treatments for the removal of MPs, but the oxidation rates of the single compounds may be largely affected by the constituent species of the water matrix. These species include dissolved organic matter and inorganic species (e.g., carbonate, bicarbonate, nitrite, sulphate, chloride). This review analyses the impact of such substances on common AOTs including photolysis, UV/H2O2, Fenton, photocatalysis, and ozone-based processes. The degradation efficiency of single MPs by AOTs results from the combined impact of the water matrix constituents, which can have neutral, inhibiting or promoting effect, depending on the process and the mechanism by which these water components react. Organic species can be either inhibitors (by light attenuation; scavenging effects; or adsorption to catalyst) or promoters (by originating reactive oxygen species (ROS) which enhance indirect photolysis; or by regenerating the catalyst). Inorganic species can also be either inhibitors (by scavenging effects; formation of radicals less active than hydroxyl radicals; iron complexation; adsorption to catalyst or decrease of its effective surface area) or promoters (e.g., nitrate ions by formation of ROS; iron ions as additional source of catalyst). The available data reviewed here is limited and the role and mechanisms of individual water components are still not completely understood. Further studies are needed to elucidate the wide spectrum of reactions occurring in complex wastewaters and to increase the adoption of AOTs in UWWTPs

    Whole-body vibration exercise improves functional parameters in patients with Osteogenesis imperfecta: a systematic review with a suitable approach

    Get PDF
    Background: Patients with osteogenesis imperfecta (OI) have abnormal bone modelling and resorption. The bone tissue adaptation and responsivity to dynamic and mechanical loading may be of therapeutic use under controlled circumstances. Improvements due to the wholebody vibration (WBV) exercises have been reported in strength, motion, gait, balance, posture and bone density in several osteopenic individuals, as in post-menopausal women or children with disabling conditions, as patients with OI. The aim of this investigation was to systematically analyse the current available literature to determine the effect of WBV exercises on functional parameters of OI patients.Materials and methods: Three reviewers independently accessed bibliographical databases. Searches were performed in the PubMed, Scopus, Science Direct and PEDro databases using keywords related to possible interventions (including WBV) used in the management of patients with osteogenesis imperfecta.Results: Three eligible studies were identified by searches in the analysed databases.Conclusion: It was concluded that WBV exercises could be an important option in the management of OI patients improving the mobility and functional parameters. However, further studies are necessary for establishing suitable protocols for these patients.Keywords: whole body vibration exercise, osteogenesis imperfecta, mobility, functional parameters, Database

    Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity

    Get PDF
    Photocatalytic ozonation was employed for the first time in continuous mode with TiO2-coated glass Raschig rings and light emitting diodes (LEDs) to treat urban wastewater as well as surface water collected from the supply area of a drinking water treatment plant (DWTP). Different levels of contamination and types of contaminants were considered in this work, including chemical priority substances (PSs) and contaminants of emerging concern (CECs), as well as potential human opportunistic antibiotic resistant bacteria and their genes (ARB&ARG). Photocatalytic ozonation was more effective than single ozonation (or even than TiO2 catalytic ozonation) in the degradation of typical reaction by-products (such as oxalic acid), and more effective than photocatalysis to remove the parent micropollutants determined in urban wastewater. In fact, only fluoxetine, clarithromycin, erythromycin and 17-alpha-ethinylestradiol (EE2) were detected after photocatalytic ozonation, by using solid-phase extraction (SPE) pre-concentration and LC-MS/MS analysis. In surface water, this treatment allowed the removal of all determined micropollutants to levels below the limit of detection (0.01-0.20 ng L(-1)). The efficiency of this process was then assessed based on the capacity to remove different groups of cultivable microorganisms and housekeeping (16S rRNA) and antibiotic resistance or related genes (intI1, blaTEM, qnrS, sul1). Photocatalytic ozonation was observed to efficiently remove microorganisms and ARGs. Although after storage total heterotrophic and ARB (to ciprofloxacin, gentamicin, meropenem), fungi, and the genes 16S rRNA and intI1, increased to values close to the pre-treatment levels, the ARGs (blaTEM, qnrS and sul1) were reduced to levels below/close to the quantification limit even after 3-days storage of treated surface water or wastewater. Yeast estrogen screen (YES), thiazolyl blue tetrazolium reduction (MTT) and lactate dehydrogenase (LDH) assays were also performed before and after photocatalytic ozonation to evaluate the potential estrogenic activity, the cellular metabolic activity and the cell viability. Compounds with estrogenic effects and significant differences concerning cell viability were not observed in any case. A slight cytotoxicity was only detected for Caco-2 and hCMEC/D3 cell lines after treatment of the urban wastewater, but not for L929 fibroblasts.info:eu-repo/semantics/acceptedVersio
    corecore