2,042 research outputs found

    Existence and uniqueness of mild solutions of nonlinear difference-integrodifferential equation with nonlocal condition

    Get PDF
    In this paper we investigate the existence, uniqueness and continuous dependence of solutions of the difference-integrodifferential equations. The results are obtained by using the well known Banach fixed point theorem, the theory of semigroups and the inequality established by B. G. Pachpatte

    Centrifugal terms in the WKB approximation and semiclassical quantization of hydrogen

    Get PDF
    A systematic semiclassical expansion of the hydrogen problem about the classical Kepler problem is shown to yield remarkably accurate results. Ad hoc changes of the centrifugal term, such as the standard Langer modification where the factor l(l+1) is replaced by (l+1/2)^2, are avoided. The semiclassical energy levels are shown to be exact to first order in â„Ź\hbar with all higher order contributions vanishing. The wave functions and dipole matrix elements are also discussed.Comment: 5 pages, to appear in Phys. Rev.

    Particle Detection by Evaporation from Superfluid Helium

    Get PDF
    We report the first experiments in which 5-MeV alpha particles are detected via evaporation from a bath of superfluid helium. The α excites phonons and rotons in the liquid helium, and these excitations are sufficiently energetic to evaporate helium atoms when they reach the free surface of the liquid. The approximate overall efficiency of this process has been determined, and we compare this with expectations. We have also been able to detect evaporation induced by a flux of γ’s from a 137Cs source

    Fast simulation of a quantum phase transition in an ion-trap realisable unitary map

    Get PDF
    We demonstrate a method of exploring the quantum critical point of the Ising universality class using unitary maps that have recently been demonstrated in ion trap quantum gates. We reverse the idea with which Feynman conceived quantum computing, and ask whether a realisable simulation corresponds to a physical system. We proceed to show that a specific simulation (a unitary map) is physically equivalent to a Hamiltonian that belongs to the same universality class as the transverse Ising Hamiltonian. We present experimental signatures, and numerical simulation for these in the six-qubit case.Comment: 12 pages, 6 figure

    First impressions and perceived roles: Palestinian perceptions on foreign aid

    Get PDF
    This paper summarizes some results of a wider research on foreign aid that was conducted in the West Bank and Gaza Strip in 2010. It seeks to describe the impressions and feelings of Palestinian aid beneficiaries as well as the roles and functions they attached to foreign aid. To capture and measure local perceptions on Western assistance a series of individual in depth interviews and few focus group interviews were conducted in the Palestinian territories. The interview transcripts were processed by content analysis. As research results show — from the perspective of aid beneficiaries — foreign aid is more related to human dignity than to any economic development. All this implies that frustration with the ongoing Israeli-Palestinian conflict inevitably embraces the donor policies and practices too

    Nucleus-Electron Model for States Changing from a Liquid Metal to a Plasma and the Saha Equation

    Full text link
    We extend the quantal hypernetted-chain (QHNC) method, which has been proved to yield accurate results for liquid metals, to treat a partially ionized plasma. In a plasma, the electrons change from a quantum to a classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact able to provide the electron-electron correlation at arbitrary temperature. As an illustrating example of this approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV at a fixed normal ion-density 1.03Ă—1022/cm31.03 \times 10^{22}/cm^3. The electron-ion radial distribution function (RDF) in liquid Rb has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that, with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion and ion-ion RDF's, and the charge population which are consistent with the atomic structure of each ion for a partially ionized plasma.Comment: 28 pages(TeX) and 11 figures (PS

    Kinetically driven glassy transition in an exactly solvable toy model with reversible mode coupling mechanism and trivial statics

    Full text link
    We propose a toy model with reversible mode coupling mechanism and with trivial Hamiltonian (and hence trivial statics). The model can be analyzed exactly without relying upon uncontrolled approximation such as the factorization approximation employed in the current MCT. We show that the model exhibits a kinetically driven transition from an ergodic phase to nonergodic phase. The nonergodic state is the nonequilibrium stationary solution of the Fokker-Planck equation for the distribution function of the modelComment: 10 pages, 1 figure, contribution to the Proceedings of the Barcelona Workshop 'Glassy Behavior of Kinetically Constrained Models'. To appear in J. Phys. Condens. Matte

    Phonon amplification using evaporation and adsorption of helium

    Get PDF
    We report the results of experiments designed to investigate the feasibility of amplifying a phonon signal using the evaporation of helium from a superfluid film and its subsequent readsorption onto a helium-free surface. We envision a multistage amplifier in which helium is evaporated from a wafer with a helium film only on one side and then adsorbed onto the film-free surface of a similar wafer. The phonons created by the adsorption reach the film on the opposite side of the wafer and potentially desorb more helium than was evaporated by the first wafer. The amplification would come from the high ratio of the binding energy of a helium atom to a film-free surface relative to the binding energy to the liquid. A number of experiments are reported that investigate the efficiencies of the individual steps of the process. The gain per stage is found to be about 3 for high-energy densities in which multiphonon processes are possible. At low-energy densities, the energy deposited into a film-free wafer is found to be less than the original input energy, with the ratio of output to input energy 0.2. Since in applications requiring amplification the phonon density produced by the adsorption of helium on a wafer will be low, the configuration we have studied—phonons produced in silicon coated with a saturated He4 film—will not result in amplification. However, other configurations might improve the efficiency enough to make an amplifier possible

    Pressure formulas for liquid metals and plasmas based on the density-functional theory

    Full text link
    At first, pressure formulas for the electrons under the external potential produced by fixed nuclei are derived both in the surface integral and volume integral forms concerning an arbitrary volume chosen in the system; the surface integral form is described by a pressure tensor consisting of a sum of the kinetic and exchange-correlation parts in the density-functional theory, and the volume integral form represents the virial theorem with subtraction of the nuclear virial. Secondly on the basis of these formulas, the thermodynamical pressure of liquid metals and plasmas is represented in the forms of the surface integral and the volume integral including the nuclear contribution. From these results, we obtain a virial pressure formula for liquid metals, which is more accurate and simpler than the standard representation. From the view point of our formulation, some comments are made on pressure formulas derived previously and on a definition of pressure widely used.Comment: 18 pages, no figur
    • …
    corecore