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1. INTRODUCTION
Using Tychonov's fixed point theorem, the method of successive approximations, and the comparison method, S.
Sugiyama [14] studied the existence and uniqueness of solutions of the following problem:

M=f(t,x(t),x(t—l)), (1.1)
dt
for 0 <7 <¢,, with the conditions

x(t-1)=¢(t) (0<¢r<1), (1.2)

x(0) = x,, (1.3)

where X and f represent 7 -dimensional vectors (see [14] for details) and Stokes [13] has discussed the same
problems as above for nonlinear differential equations.

In [16], S. Sugiyama proved the existence, stability, and boundedness of solutions of the difference-differential
problem (1.1)—(1.3) by making use of Tychonov’s fixed point theorem with additional condition on f and we also refer the
papers of S. Sugiyama [15, 17]. Subsequently some authors have been studied the problems of existence, uniqueness

and other properties of solutions of (1.1) by using different techniques, see [1, 6, 9, 12] and the references cited therein.
We also refer some papers and monographs [9, 14], [1, p. 342], [5, p.308], [7, p. 18].

Recently, in the interesting paper [11], B. G. Pachpatte has studied the existence, uniqueness and continuous
dependence of solutions (1.1)—(1.3) with an infinite interval of ¢, by the well known Banach fixed point theorem and the
Gronwall-Bellman integral inequality.

From the above works, we can see a fact, although the difference-differential problems have been investigated
by some authors. However, to our knowledge, the difference-integrodifferential equation with nonlocal conditions and an
infinitesimal generator of operators has not been discussed extensively. So motivated by all the works above, the aim of
this paper is to prove the existence, uniqueness and continuous dependence of solutions of the difference-
integrodifferential of the form:

xX'(t)= Ax(t)+ f(¢t,x(2), J.Olk(t, s, x(s))ds,x(t —1)), (1.4)

for t € R, =[0,90) under the conditions
x(t-1)=¢() (0=L1<1), (1.5)
x(0)+ g(x) = x,, (1.6)

where A is an infinitesimal generator of a strongly continuous semigroup of bounded linear operators T(t) in X,

feCR xXxXxX,X), keCR, xR, xX,X), geC(C(R,,X),X) and ¢(¢) is a continuous function

for 0<¢<1, lim ¢(¢) exists, for which we denote by ¢(1—0) = ¢, . If we consider the solutions of (1.4) for t €R |
t—1-0

we obtain a function x(¢# —1) which is unable to define as solution for 0 <# <1. Hence, we have to impose some

condition, for example the condition (1.5). We note that, if 0 <¢ <1, the problem is reduced to integrodifferential equation

t
X(1)= Ax(O)+ [ (1, (0), [ k(2 5, x(s))ds, $(1)),
with initial condition x(0)+ g(x) = X, . Here, it is essential to obtain the solutions of (1.4)~(1.6) for 0 < <o00.
The paper is organized as follows. In section 2, we present the preliminaries and hypotheses. Section 3 deals

with existence and uniqueness of the solutions. Finally, in Section 4 we discuss results on continuous dependence of
solutions on initial data, functions involved therein and parameters.

2. PRELIMINARIES AND HYPOTHESES
Before proceeding to the statement of our main results, we shall set forth some preliminaries and hypotheses that will be
used in our subsequent discussion.
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Let X be the Banach space with norm ||||. Let S be the space of all continuous functions from R, into X
and fulfill the condition
12(2) [| = O(exp(Ar)), (2.1)
for some positive constant A > 0 . In this space we define the norm (see [2, 8])
Izlls = sup [lz(5)|lexp(=A0)]. (2:2)
teR

It is easy to see that S with the above norm is a Banach space. Note that condition (2.1) implies the existence of a

nonnegative constant N such that || z(¢) ||< N exp(At) for £ €R, . Using this fact in (2.2) we observe that
zlly < N. (2.3)

Definition 2.1 Let — A is the infinitesimal generator of a Co — semigroup T(t), t >0, on a Banach space X . The

function x € B given by
x(0) = T(0)[x, - ()] + [Tt =5) £ (5, x(5), [ k(s 7, x(0))d 7, 9(5))ds, 24)
for 0<¢<1,and
x(0) = T(Ox, g1+ [T~ 5) £ (5. (s). [ K(s,7.x(2)d . $(s))ds
+ L T(t = 5) £ (s,x(5), J:k(s, 7, x(2))dz, x(s —1))ds, 2.5)

for 1 <t <00, is called the mild solution of the problem (1.4)—(1.6).

We require the following Lemma known as the Pachpatte’s inequality in our further discussion.
Lemma 2.2 (,p. 152) Let u,e,b e C(R,,R,) andfor s<t; a(t,s),c(t,s) e C(R?,R,) . If e(t) and a(t,s) be
be nondecreasing in t € R L and
t S
u(t) < e(t) + joa(t,s)[b(s)u(s) + joc(s, Ou(r)dr]ds,
for t € R+ , then

u(t) < e(t) exp( jo'a(t, $)[b(s) + j:c(s, )dr]ds),for t €R, .

We list the following hypotheses:

(H1) A is the infinitesimal generator of a semigroup of bounded linear operators T(t) in X such that

|T(¢)||<N,, forsome N,=>1.

(H2)  The function f in (1.4) satisfies the condition
lf @.xy,2) = f(.%.3,2) | < pyOl|x = *[|+[ly = ¥+ z - Z[]],
for (t,x,9,2),(t,%,9,2) eR, x X x X x X ,where p, € C(R,,R,) and increasing function.

(Hs)  The function k in (1.4) satisfies the condition
[k(t,5,%) = k(,5, %) < ¢, (&, 5)[]|x = X[[I,
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for (t,5,X),(,5,%) €Rx X ,where ¢, e C(R*,R,).

(Hs)  There exists constant K such that

K= max Hk(l‘,S,O)H
0<s<t<w

(Hs)  There exist constants G, G, =0 such that
lgI <G, and [g(0)-gM|<Gllx—x],

for every x,)_ceC(R+,X).

(Hs)  For A asin (2.1):

1-N,G
No(l"'?’)’

(a) there exist nonnegative constants o < N,G <1, <1 suchthat

jo’ [p,(s)+ p,(s + 1)]exp(As)ds < aexp(As), for teR,,

and

jol ¢, (s,0)exp(Ar)dr < yexp(At), for r<s<teR,.

(b) there exists a nonnegative constant v such that

1 t t
o[+ G, + [ Py (9) | #Cs) l1ds + [11/ (5.0,0,0) [ ds + K [ sp, (s)ds <vexp(Ar), for teR,.

3. EXISTENCE AND UNIQUENESS

We first prove the fundamental result.
Theorem 3.1 Assume that hypotheses (H,)—(H ) hold. Then the problem (1.4)- (1.6) has a unique mild solution on
R, inS.

.
Proof. Let x(¢) € S and define the operator F':.S — S by (see [14])

Fx(t) = T(0)[x, - @)+ [ T(t =) f (5, x(5), [ k{5, 7. x(2))d 7, gl(s)ds, @)

for 0<¢<1,and
Fx(t) = T(O)x, ~ g ()] + [ T(t =) f (5,3(5). [ k(s 7.x(2))d 7. 4(5))ds

t S
+ L T(t—5)f(s,x(s), Lk(s,r,x(r))dr,x(s —1))ds, (3.2)
for 1<t <o00. First we shall show that Fx maps S into itself. Since all functions involved in (3.1) and (3.2) are

continuous, therefore, /X is continuous on R+ and Fx € X . To verify that (2.1) is fulfilled, we consider the following
two cases.
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Case 1: 0 <7 <1. By using the hypotheses (H,)— (/) and (2.3) in (3.1), then we have

| POl < Nyl + Gy 1+ [N (5, x(5), [ ks, 7, x(2)d 7, 6(5)) ~ £ (50,000 Tds + [ Nl £(,0,0,0)] ds

< Nylllxoll+ G+ [ Ny oy (9)112(5) = O +|[ k(s 7, x(z))dz = 0] + ]| ¢(s) = Olflds + [ Nyl (5,0,0,0)] s
< Ny[llxoll+ Gy 1+ [ Nop 01X + [ g (5. 0 [x(2) - 0| =
+ [ Kdz + ] g(o)1ds + [ N,/ (5.0,0,0)] ds

< Nylllxoll + G+ [ Nopy ()X + [ (5. 0) 1x() |1 d 2

+ (5= O)K + | 4(s)l1ds + [ NI (5,0,0,0)]| ds
< Nolllxoll+ G, + []1f (5,0.0.0)ds + K [ spy (s)ds + [ py () | #(s)]| ds]
+ [ Nopy 0| x)]+ 7 [l exp(As)lds

< Nyvexp(Atf) + aNoH x”s exp (A1) + a]’NonHs exp (41)]

SN [v+aN(1+y)]exp(Ar). (3.3)

Case 2: 1 < < 00. From (3.2), using the hypotheses and (2.3), then looking at Case 1 immediately we have

|Ex()] < No[(1x]l+ Go) + [ 22 ()] 05) s + [[1f (5.0.0,0) |1 ds + K ['sp, (s)ds]
+ Ny [ 2y ()| x(s = Dllds + [ Ny py ()| x()][ + 7 [ x]l exp(As)Ids
< Nolvexp(e) + ay |[xlly exp(20) + [ p (5)|[x(s)] ds + [ py (s)|x(s = 1) | ds]

< Ny[v exp(A) + ay |[x]s exp(An) + [ py ()|x(s)lds + 1,1, (3.4)
where

!
I, = [ p ()]l x(s = 1) ds. (35)

By making the change of variable, we obtain

-1 ’
I = _L pi(o+1)||x(o)||do < _[Opl(0+l)||x(o-)||do-. (3.6)

Using (3.6) in (3.4), we get

| Fx(0)]| < No[vexp(An) + ay ||l exp(2) + [ py(5) | x(5) || ds + [ py (s + 1) |x(s) | ds]
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< Nylvexp(an) +ay [|xlly exp(20) + [ [, (5) + p, (s + D]|x(s) | ds]

< No[vexp(a) + ay [|x|s exp(2) + [xll [[[21(5) + p,(s + D]exp(As) ds]
< Nolvexp(Ar) + ay [|x||s exp(40) + o[ x]s exp(40)]
<N [v+aN(1+y)lexp(Ar). (3.7)

From (3.3) and this inequality, it follows that Fx € S . This proves that F' maps S into itself.

Next, we verify that the operator F' is a contraction map. Let x, VAS S . We consider the following two cases.

Case 1: 0 <¢ <1. From (3.1) and using the hypotheses, we have

[(F)(0) = (F) @) < NoGllx = yll+ Ny [ oy )I1x(5) = y6)] | + [ (s, 7,x(2) ~ kG, 7, ()7 |
+4() — ¢(s) [1ds

< Ny Gllx = 3]+ Ny [ p $)I[x() = y)|+ [ 9, 5, D)} x(2) = 3(2) | d 7 ds
< N Gllx =yl + No [ py ()1() = y(s)|+Fx =yl [ a (5. 2) exp(Az)d 7 s

< N, Gexp(a)|x =l + No[[ P, (5)|x(s) = ()] ds + 7 [x = yll [ 1 () exp(As)ds]

< No[Gexp(an)|x =yl +[x =yl [ pi(s)exp(as)ds + y [l x =yl [ py(s) exp(As)ds]
< Ny[Gexp(An)||x = ylls +allx - ylly exp(A0) + ay [|x =yl exp(A1)]

< NG+ a1+ p)]|x = ylls exp(A2). (3.8)

Case 2: 1 < <00. From (3.2) and using the hypotheses, we have

[(Fx)@) = (Fy) @ < NoG exp(an)|x = vl + [ Nopy (9)1x(s) = p(s)|+[1x = vl [ 4, (5, 7) explAr)dzds
+ [Nopy (@)l x(s=1) = y(s = 1) ds
< NyGexp(A0) [ x = ylly + [ Nopi()[1x() = ()] + 7 [l = plly explas)lds
+ [ Nopy@)x(s =1) = y(s = 1) | ds
< N [Gexp(A)|x =yl + [ py ()l x(s) - y(s) s+ 7 [|x =yl [ py (s) exp(As)ds
+ [ pi($)Ix(s =1) = y(s =1)] ds]

t
< No[Gexp(a)]|x = ylls + [ pi ()]l x(s) = y(s) || ds + ay | x = ylls exp(AD) + ], (3.9)
where
!
1 = [ py(s)|x(s =1) = p(s = 1) ds. (3.10)
By making the change of variable, we obtain
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< [ p1(s + D) x(s) = y(s)| ds. @3.11)
Using this inequality and (3.9), we get

| Fx(t) = Fy(0)| < Ny [Gexp(a0)x = vl + 1= vl [[,(5) + py (s +1)]exp(As)ds + ay [[x = vl exp(An)]
< Ny[Gexp(An)|[x = ylis + allx = [y exp(Ae) + apf|x — y|is exp(A1)]
< NG +a(l1+p)]x = yls exp(42), (3.12)

forall x,y € .S . From (3.8) and (3.12), we observe that
| Fx = Fylls < No[G +a(l+p)]x =yl
By condition (a) of hypothesis (), we have N [G+a(1+ )] <1 and hence, it follows from Banach fixed point

theorem [4, p. 37] that ' has a unique fixed in S'. The fixed point of F is however a solution of (1.4)-(1.6). This
completes the proof.

The following theorem shows the uniqueness of solutions to (1.4)-(1.6) without the existence part.
Theorem 3.2 Suppose that the hypotheses (H,) and (H,) hold. Then the problem (1.4)-(1.6) has at most one

solutionon R, .

Proof. Let x,(f) and X,(Z) be two solutions of (1.4)-(1.6) and u(f) = ||x,(#)—x,(?)||, t€R, . We consider the
following two cases.

Case 1: 0 <¢ <1. From the hypothesis, we have

u(t) < NoGu(t) + [ Nopy (5)u(s) + [ k5, 7,3, (7)) = k(s. 7%, (2)) || d]ds
< NyGu(t) + [ Nopy(9)[u(s) + [ (5, 7)][x, (2) = x, (7)] dzds
< NyGu(®)+ [ Nopi(9)[u(s) + [ ¢, (s, Dyu(e)d7)ds

< NGu(®)+ [ Nopi()u(s)ds + [ Ny py(5)L[ 9, (s, ) yu(z)d)ds,

which implies

u(t )<J. - OI;\II(G) u(s)+j§q1(s,r)u(r)dr]ds. (3.13)

Now a suitable application of Lemma 2.2 (with e(t) = (), known as Pachpatte’s inequality, yields

(0=, ()] < Oexp(f, -2 °p1() 1+jq1(s 7)dr]ds) <O0. (3.14)

Case 2: 1 <t < 00. From the hypothesis and following ideas from the above case, we obtain

u(t) < NoGu(t) + [[Nopy (9)u(s) + [ g, (s, D)u(@)dds + [ Nopy (5)]1x, (s = 1) = x, (s = 1) ds
< N,Gu(t)+ _ENO p.()[uls) + J:ql (s, D)u(z)drlds + NI, (3.15)

where
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I, = L[p1 (S)[x, (s =1) —x, (s =1)|| ds.

By making a change of variable, we observe that

I < [ py (s + D)3, (5) = x, ()] ds.

Using this inequality in (3.15), we obtain
u(t) < NyGu(t) + [ Ny p, ($)[u(s) + [ g, (5, u(2)d7)ds + [ Ny py (s + Du(s)ds
< NyGu(t)+ [ Nopi(9)[u(s)+ [ 9, (s, D)u(e)d)ds + [ Ny, (s +1)u(s)ds
< NGu(t)+ [ No(py(s)+ pi(s + D)u(s) + [ (s, Tu(r)d 7]ds,

which gives

Ny(pi(s)+ pi(s+1))
1£N,G

u(t) < jo [u(s)+ [ ,(s,Du(r)d]ds.

Now a suitable application of Lemma 2.2 (with e(¢) = 0), known as Pachpatte’s inequality, yields

No(p,(s)+ p,(s+1))
1-N,G

I, (1) = x, (1) ]| < Oexp( jot [1+ [[q, (s, r)dr]ds) <0. (3.16)

From (3.14) and the inequality (3.16), we have X,(¢) = x,(¢) for € R, . Thus there is at most one solution to (1.4)-

(1.6) on R+ . This completes the proof.

4. CONTINUOUS DEPENDENCE

In this section we study the continuous dependence of solutions to (1.4) on the given initial data, and on the function f .

Also we show the continuous dependence of solutions of equations of the form (1.4) on certain parameters.
First, we shall give the following theorem concerning the continuous dependence of solutions to (1.4) on the given
initial data.

Theorem 4.1 Suppose that the hypotheses (H,)-(H,) hold and let x,(t), X, (t) be the solutions of (1.4) with the

initial conditions

n(t-D=4@) (0=<i<l), x(0)+g(x)=c, (4.1)
x(E-1)=¢,) (0<r<I), x,0)+g(x,)=c,, (4.2)

respectively, where ¢, C, are elements of X . Then

Nop,(s)
1

Y [1+ [ q,(s.7)dr]ds), 4.3)

C t
() =0l < 7 Gexp(jo(

for 0<¢<1 and

No(p,(s)+ p,(s+1)
(1-N,G)

YGRS <r>||1_fvo cexn(, [1+[q,(s,0)dzlds),  (44)

for 1 <¢ < o0, where
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¢ = Nylle, = ||+ [N, ()] 4,(5) ~ 4 (5)] ds: @)

Proof. Let u(t) =||x,(¢) — x,(¢)|| for € R, . We consider the following two cases.

Case 1: 0 <¢ <1. From the hypotheses, it follows that

u(t) < No(le, = el + Gu) + [ Nopy (5)lu(s) + [ . (s, Dyu(e)dz + ] 6,(5) ~ 4 (5)] 1 ds
<Ny(le =, |+ Gu(e) + [ Nopy (s)uls)ds + [ Ny p, ()| ¢, (s, D)u(r)d 2
+ [ Nopy ()] 4,(5) — 4, (5)] s
< Nilley = e[+ NoGu(®) + [ Nopy(5)]| 4 (5) — 6, (5) s
+ [ Nopy()u(s)ds + [ Ny py(9)[[ a1 (s, Du(z)d71ds

< e+ NyGu(t) + [ Ny py(9)[u(s) + [ g, (s, D)u(r)d 7ds,

which implies

u(t) < zchG + jo iv—()]z)vl ZSG) [u(s)+ [\, (s, DYu(z)d 7]ds. (4.6)

C
1-N,G

Now an application of Lemma 2.2 (with e(t) = ), known as Pachpatte’s inequality, to (4.6), yields (4.3).

Case 2: 1<t < 0. By following a similar arguments as in Case 2 of the proof of Theorem 3.2 and from the
hypotheses, it follows that

u(?) < No” S Cz” + N, Gu(t) + J.OlNop1 )l $(s) =9, (s) | ds
[Ny (5) + py s+ D)NCs) + [0, (s )1

<o+ NyGu(t)+ [ No(p,(s) + py (s +1)[u(s) + [ ¢, (s, Dyu(z)d)ds,

which implies

u(t) < l—Jc\/ c +JZ No(p, (IS—) ;jpcl;(s D) [u(s)+.[:q1 (s, D)u(r)dr]ds. (4.7)

Now an application of Lemma 2.2 (with e(t) = ), known as Pachpatte’s inequality, to (4.7), yields (4.4). From

1-N,G

(4.3) and (4.4), it follows that the solutions of equation (1.4) depends on the given initial data. This completes the proof.

Now, we consider (1.4)—(1.6) and the corresponding initial-value problem
V()= Ay()+ £ (& 3(0), [ k(2. 5, y(5))ds, y(t=1), 48)

for t € R+ under the initial conditions
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We=D=y(@). y(0)+g(») =y, @9)
where 7GC(R+><X><X><X,X), geC(C(R+,X),X), ke C(R2xX,X), and w(t) is a continuous

function for which the limit 1im,_,1_o ¥ (¢) exists.

The following theorem shows the continuous dependence of solutions to (1.4)—(1.6) on the function f and the

closeness of the solutions of equations (1.4)—(1.6) and (4.8)—(4.9).

Theorem 4.2 Suppose that the hypotheses (H,)—(H ) hold and there exist constants & > 0,6, > 0,5, >0 such
that
1/ (2 u,v,w) = f(tu,v, W[ < &, (4.10)

Hg(u)_g(“)|’351a”xo_J’0H352a (4.11)

where x,, 2,9, f and yo,g,l//,7 are as in (1.4)—(1.6) and (4.8)—(4.9). Let x(¢) and y(¢) be respectively, solutions

of (1.4)~(1.6) and (4.8)<(4.9) on R, . Then

¢ Nopi(s) 6
Ix(0) =y < —(1 .G [, Y Sl [1:(s,2)dz1ds),
for 0<¢ <1 and
N ()t p(s+1)
Ix() 30l < 77 & G) xp(, i [\a1(s.0)dz1ds),

for 1 <t < oo, where
1
N (8, +8, + 1)+ [ Nop, ()| ¢(s) ~ v ()] ds.

Proof. Let u(t) = ||x(¢) — y(2)|| for t € R, . We consider the following two cases.

Case 1: 0 <¢ <1. From the hypotheses, we have

u() < Nollx = 7ol + Noll g ()~ W)l + Nollg(x) = g (W)
+ [ Nollf (5, x(5), [ (s, 7, x()d 7, 9(5)) = (5, 7(5), [ (s, 7, 02Dz, p () s
+ [N (5, 9(9), [ s, 7, 0Dz (5) = £ (5, (5), [ (s, 7, (@), p ()| ds
< Ny, + Ny, + NyGllx = 31+ [ Nop, ()] #5) —w(5)] ds
+ [ Nopy0M1x(5) = 39 + [ (5, D)|x(0) = y(D)| delds + [ Ny&,ds

<c+ N,Gu(t) + I;Nopl ()[u(s)+ J:ql (s,7)u(r)dr]ds

which implies

c 1 Nypi(s) s
u(t) < oNG) + jo NGy [u(s) + qu (s,7)u(r)dr]ds, (4.12)
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Now an application of Lemma 2.2 (with e(t) =< ), known as Pachpatte’s inequality, to (4.28), yields that for
(1-N,G)
0<r<1,
c ps) g
x(t)— y(¢t P o=l [1+ s,7)d7]ds). (4.13)
50 =yl < =y G) p(JO(1 .0\ [[a:(s.0)d71ds)

Case 2: 1 <t < 0. Following an arguments as in Case 2 of the proof of Theorem 3.2 and from the hypotheses, we
obtain

u(t) < Nol|xo = voll + Nol|2(0) — g+ Nyl g(x) — g ()]

+ [N (5,35), [ (s, 7. x(2))d 2, §(5)) — £ (5, 0(5). [ k5. 7,y (), (s)) | s
+ [N G5, 260 [ s, 7,y @)z, () = 75 0(5), [ ks, 7,y (0D, (s)) | ds

+ [ Nollf (5,25), [ ks, 7, x(2)d 7, x(s = 1) = £, y(5), [ (s, 7, 9(2))d 7, (s = )| ds
+ [ Nollf (5, 9(5), [ k(s 7, p(@)dz, y(s = 1) = £ (5,(5), [ K(s, 7, y(@))d, 95 = ) ds

< NS, + N, + NyGllx =3+ [Ny p, ()| #(5) = pr(s) s
+ [No (p1()+ i (s + D)|x(5) = y(9)]|+ [ 9, (5, D) (r) — y(@)]| dlds + [ Nz, ds

<c+ N,Gu(t) + J:NO (p,(s)+ p, (s +1))[u(s) + J:ql (s,7)u(r)dr]ds

which implies

¢ Ny (p,(8)+ p,(s+1)) :
u(t) < + Uatsd L u(s)+ s, 7T u(r)dr]ds, 4.14
& = [ = W A [[ai(s.Du(@)dz] (4.14)
Now an application of Lemma 2.2 (with e(l‘) ___ G ), known as Pachpatte’s inequality, to (4.30), yields that for
(1-N,G)
1<t<o0,
1Ny (p(s) +pi(s+1)) s
x(t t [1+ s, 7)dt]ds). 4.15
OB 0 E e NG) exp(, T [[a(s.0)dzlds).  @as)

From this inequality and (4.29), it follows that (1.4)—(1.6) depends continuously on the functions involved therein. The
proof is completed.

Remark 4.3 The result given in Theorem 4.2 relates the solutions of IVP (1.4)—(1.6) and of IVP (4.8)—(4.9) in the sense
thatif f iscloseto f°, X, is closeto y,, ¢ iscloseto ¥ and g isclose to g, then the solutions of IVPs (1.4)—(1.6)

and (4.8)—(4.9) are also close together.

We consider the IVP (1.4)—(1.6) together with
!
V()= A0 + £, y(0), [ k(2. , y(s))ds, y(t 1)), (4.16)
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yt-D)=y, (), yO)+g,(»=c, (4.17)
for k=1,2,--, where f e C(R,xXxXxX,X), g, e C(CR,,X),X), ke CR>xX,X), R) and for

each k =1,2,---, y, (t) is a continuous function for which the limit lim,_,_o¥, () exists.

As an immediate consequence of Theorem 4.2, we have the following corollary.
Corollary 4.4  Suppose that the hypotheses (H,)—(H;) hold and there exist nonnegative constants
EsOps S (k=1,2,-+-) such that
Hf(t,u,v,w)—7k(t,u,v,w)|\S&‘k, (4.18)
lg@) =g, @I <8, llxg — | < Sk, (@.19)

with &, — 0 and 5,(,5} —>0 as k >0, where x,,g,9, f,k and ck,gk,lyk,7k are as in (1.4)~(1.6) and
(4.16)~(4.17). If y, () (k=1,2,---) and x(¢) are respectively the solutions of (4.16)—(4.17) and (1.4)-(1.6) on R,
then y,(t) > x(t) as k > on R, .

Proof. For k=1,2,---, the conditions of of Theorem 4.2 hold. As an application of of Theorem 4.2 and Lemma 2.2 yields

Cy Nyp, (s) s
Iy, ) =x0l < 75— exp(|, - [,a:(s,0)d71ds), (4.20)

for 0<¢ <1 and

. Ny(p,(s)+ p,(s+1))
(1NG)p(J (1- N,G)

1y, () = x(0)] < [+ [[a/(s,0)dzlds),  (@21)

for 1 <t <00, where

¢ = Ny(8, +8; +£,0+ [ Nop, ()| 4(5) =, (5)] ds.

The required results follow from (4.20) and (4.21). It follows that (1.4)—(1.6) depends continuously on the functions
involved therein. This completes the proof.

Remark 4.5 The result obtained in Corollary 4.4 provide sufficient conditions that ensures solutions of IVPs (4.16)—(4.17)
will converge to the solutions of IVP (1.4)—(1.6).

Next, we consider the difference-differential equations

xX'(t)= Ax(t) + 7(t, x(1), J.Otk(t, s,x(8))ds, x(t=1), 1), (4.22)

xX'(t) = Ax(t) + ?(t, x(1), J.Otk(t, s, x(s8))ds,x(t—=1), 1,), (4.23)
for t €R, , where 7 e C(R, x X x X x X xR, X)), and with the initial conditions given by (1.5)~(1.6).

The following theorem states the continuous dependence of solutions to (4.22) and (4.23) with the initial
conditions given by (1.5)—(1.6) on parameters.
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Theorem 4.6 Assume that hypotheses (H ), (H,)—(Hy) and there exists an increasing function p, € C(R,,R,)

such that
| f@x,y,2, 1) = f(6,%,5,2, 00 < p, Ol x = %[ +[ly = Pl + |z = 2|1+ | 4, — 15 []-
Let x,(¢) and x,(t) be the solutions of (4.22) with (1.5)~(1.6) and (4.23) with (1.5)—(1.6) respectively. Then

)= y(o)] < ('“+NG)' o exa([ 0’33(2) + ['q,(s,7)drds),
for 0<¢<1 and
N 1 S
x(t) = ()] < (% [[p2(s)ds) exp[ (pz(S) o)+ fé;()S+ Vi [y, .0k,

for | <t <o0.

Proof. Let u(t) =||x,(¢) — x,(¢)|| for € R, . We consider the following two cases.

Case 1: 0 <¢ <1. From the hypotheses, we have

u(®) < | Tl g(x) = gCe)ll+ [ T = )| F (s, (5), [ ks, 7. 5, (D), (), 1)
= (5,2, (5), [ k(5,7,3, (0))d7,6(5), 1)1 s
< NyGu(t) + [ Nypy ($)[1u(s) + [ g, (5, (@) + | §(5) ~ J(s)[+ | 11y =, [V

< NoGu(t) + [ Nops ()| 1= s | ds + [ Nopa (9)luu(s) + [ g, (s, PJu(r)d]ds,

which implies

| 4 | Nyp,(s) 4
u(t) < ijz( ) Lm[ﬂ(é‘)-ﬁ—joql(& T)M(T)dT]dS. (4.24)
Now an application of Lemma 2.2 (with e(¢) = Mjpz (8)ds ), known as Pachpatte’s inequality, to (4.24),
(1-N,G)
yields
oldh =4, | opz( ) s
Ix(0) = y()] < (TG) [[p:(5)ds) exp( j o [[a/(s,0)dzlds),  @42)
for 0<¢ <I.

Case 2: 1 <t < 00. By following the arguments in Case 2 of the proof of Theorem 3.2 and from the hypotheses, we have

(1) < N,G, =+ [ Nopa ()lu(s)+ [ 4, (5. Dhu(r)d71ds
+LtNopz(S)Hx1 (s=1)—x,(s —l)HdS + Ny |-y | Iotpz(s)ds

t t S
< NoGllx, = x|+ No |t = gy || po($)ds + [ Ny (P () + pa (s + 1)u(s) + [ g, (5,0 )u(z)d71ds,
which implies

No|p —u, | Ny(p,(s)+ p,(s+1)) s
u(t) < W j p,(s)ds + j = N.G) [u(s) + J.Oql (s, 7 u(z)dr]ds. (4.26)
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Now an application of Lemma 2.2 (with e(¢) = MI P,(8)ds), known as Pachpatte’s inequality, to (4.26),
(1-N,G)
gives
ol — i | Ny(p,(s)+ p,(s+1)) s
Ix(0) = y(0)]| < (—N 5 [[p.()ds)exp([ NG [[a1(s.0)drlds),  @an)

for 1<t <o00. From (4.25) and (4.27), it follows that the solutions (4.22) with (1.5)—(1.6) and (4.23) with (1.5)—(1.6)

depend continuously on the parameters /({;, LL, . This completes the proof.

Remark 4.7 The result dealing with the property of a solution called "dependence of solutions on parameters”. Here the
parameters are scalars. Notice that the initial conditions do not involve parameters. The dependence on parameters are
an important aspect in various physical problems.

A slight variant of Theorem 4.2 is given in the following theorem

Theorem 4.8 Suppose that

||f(tsx9yaz)_f(t’x’y’Z)H = p3(t)[||x—)_c||+||y—)7||+||Z—E||],
where an increasing function p, € C(R,,R,) and hypotheses (H,),(H;)—(H,) and condition 4.11 hold. Let

x(t) and y(t) be respectively, solutions of (1.4)— ( 6) and (4.8)~(4.9) on R, . Then

0p3( ) i
I O S s NG)> p(j - ( [ia1 (s, )dr1ds),
for 0<¢<1 and
I+ =3O < (g om0 g o,y el

(1-N,G)

for 1 <t <00, where

1= Nyl6, +6,1+ [ Nops (5)]| #(5) —y(5)] ds.

Proof. Let u(t) = ||x(¢) — y(2)|| for t € R, . We consider the following two cases.

Case 1: 0 <¢ <1. From the hypotheses, we have
u(t) < Nollxy = yoll+ Nollg () — gl + Nollg(x) — g ()]

+ [[NIF (s,x(5), [ k(s 7, 5(2)d 7, §(5) = £ (5, 9(5), [ (s, 7, (@), (s))| s

+ [N (5. 99), [ s, 7, 0@z, (5) = £ (5, (5, [ (s, 7, (@), p ()| ds
< Ny, + Ny, + NoGllx = 3+ [ Nops ()| 6(5) ~ (sl ds

+ [Ny )llx(s) =y + [, (5. Dl x(2) = y(2)| d s

<1+ N,Gu(t)+ JZNO py($)[u(s)+ qu (s, D u(z)dr)ds
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which implies

! « Nopy(s) ;
u(t) < + 073 u(s)+ s, 7u(r)dz]ds, 4.28
O<iv g L(I—NOG)[() [[a: (s, ou(r)dr] (4.28)
Now an application of Lemma 2.2 (with e(t) = ; ), known as Pachpatte’s inequality, to (4.28), yields that for
(1-N,G)
0<t<1,
I~ (e Fh) ) 114 g (s )dds). (429)
-N G) ' (1-N G) o

Case 2: 1 <t <00. Following an arguments as in Case 2 of the proof of Theorem 3.2 and from the hypotheses, we
obtain

u(®) < N8, + Ny, + NoGut) + [ Ny ps ()| 4(5) ~pr ()] ds
+ [ No(py(5) + ps (s + I[us)+ [ g, (s, u(r)d z)ds

<1+ NGu(t)+ [ No(py(s)+ py(s +1)[u(s) + [ ¢, (s, D)u(z)d)ds

which implies

B ] ]
L [ "ACKACD) W [0, 0u(@)dr1ds, (4.30)
(1-N,G) *  (1-N,G) 0
Now an application of Lemma 2.2 (with e(t) = ; ), known as Pachpatte’s inequality, to (4.30), yields that for
(1-N,G)
1<t<o,
t No(p3(s) + ps(s+1))

Ix() - y®ll < ¢ NG)> exp(], [+ ] g, (s.0)delds).  @s1)

This completes the proof.

(I-N,G)
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