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Fast simulation of a quantum phase transition in an ion-trap realisable unitary mapJ.P. Barjaktarevi, G.J. Milburn and Ross H. MKenzieQuantum Computer Tehnology Researh Centre,Department of Physis, The University of Queensland,QLD 4072 Australia.(Dated: 22nd January 2004)We demonstrate a method of exploring the quantum ritial point of the Ising universality lassusing unitary maps that have reently been demonstrated in ion trap quantum gates. We reverse theidea with whih Feynman oneived quantum omputing, and ask whether a realisable simulationorresponds to a physial system. We proeed to show that a spei� simulation (a unitary map) isphysially equivalent to a Hamiltonian that belongs to the same universality lass as the transverseIsing Hamiltonian. We present experimental signatures, and numerial simulation for these in thesix-qubit ase.I. INTRODUCTIONFeynman suggested that it is possible to simulate onequantum system with another[1℄. However, we will turnthis thesis around by posing the question of what sortof a system some unitary map on a quantum omputermight orrespond to.In partiular, we examine the ion-trap model of quan-tum omputing, and �nd that the unitary maps whihhave been realised on these orrespond to the time evolu-tion of Hamiltonians whih are linked losely to the Isingmodel. Finally, we onsider the onsiderable theoretialbody of work onerned with quantum phase transitionsand renormalization group theory. This will later be thekey to the problem of identifying a quantum phase tran-sition in a unitary map.A. Simulating Quantum SystemsFeynman's �rst oneption of quantum omputing[1℄held the simulation of quantum systems as a key goal.Entanglement has been desribed as the quintessentialfeature of quantum mehanis[2℄. In general, the arbi-trary time evolution of a system is onsidered an NP-hard[3℄ problem, as memory and proessing resoures in-rease exponentially in the size of the problem, n, on alassial omputer. It is only for extraordinarily simplesystems, or ones for whih there are strong symmetries,that suh alulations are tratable.Feynman suggested that the problem ould be reduedto one in polynomial time on a omputer based on quan-tum priniples. These inlude the ability of a quantumsystem to perform unitary operations on a set of quantumbits (qubits), and to exist in entangled states. Feynmanshowed that, in priniple, it was possible to perform, inpolynomial time, algorithms whih were only possible innon-polynomial time on a lassial omputer.Sine the original formulation of the problem, the ap-pliation of quantum omputing to lassial problemshas beome more ommon. Several algorithms havebeen suggested, inluding the Deuth-Jozsa algorithm[4℄,Shor's fatorization algorithm[5℄, and Grover's searhing

algorithm[6℄. However, all of these systems are widelyonsidered far removed from urrent experimental abili-ties.Reently, Lloyd[7℄ revisited Feynman's original prob-lem, and showed that it was possible to implement thetime evolution of an arbitrary spin Hamiltonian to a par-tiular preision, ε, in polynomial time. The proedureessentially involves the deomposition of a Hamiltonianinto realizable (loal) unitary operations, and the time-wise stepping through a Hamiltonian to some arbitraryauray.It will be our desire to avoid suh an abstrated simu-lation of a quantum system, and rather onsider the pos-sibility of �nding a quantum phase transition in a quan-tum algorithm naturally realizable with urrent quantumomputing experimental hardware. In this way, we willessentially reverse the Feynman thesis, and onlude thatquantum algorithms (or unitary maps) will orrespond tothe observables of some physial system.B. Ion Trap Quantum Computers and the IsingModelDiVinenzo[8℄ and Bareno et al.[9℄ has shown thatsingle-site rotations and two-site ontrolled NOTs areuniversal for quantum omputation. Further, theSorensen-Molmer[10℄, phase gate[11℄, and indeed almostany two-site entangling gate[12℄ are universal. Hene,they will be able to a�et any unitary transformation.Cira and Zoller's paper[13℄ on old ion-trap quantumomputers introdues the use of a spatially on�ned ionspin as a qubit, and the exitation of vibrational modes asa means of oupling qubits. Further, it has been shownthat high �delity state-preparation[14℄ and readout[15℄are feasible.Milburn has suggested a robust phase spae sheme touse ion traps to simulate nonlinear interations in spinsystems[16℄. A signi�ant advantage of this sheme isthat it does not require the ooling of vibrational states.The method involves the appliation of Raman pulsesfaster than the vibrational heating time, e�etively de-oupling the e�et of vibrational modes. In partiular,Milburn shows that the evolution of a Hamiltonian of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14981569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2form
Hint = ~χσ(1)

z σ(2)
z (1)may be ahieved by a pulse sequene

Uint = e−iHint = eiκxX̂σ(1)
z eiκpP̂σ(2)

z (2)
e−iκxX̂σ(1)

z e−iκpP̂σ(2)
zwhere X̂ = a+a†

√
2

and P̂ = a−a†

i
√

2
, and expressions for κxand κp given in Ref. [17℄.Further, Wineland's researh group have reentlydemonstrated[11℄ onsiderable suess in ahieving few-qubit interations with this sheme. In partiular, theypresent a two qubit phase gate, whih has the form

|↓↓〉 → |↓↓〉 , |↑↑〉 → |↑↑〉 ,

|↓↑〉 → eiφ |↓↑〉 . |↑↓〉 → eiφ |↑↓〉whih an be reast as |Ψ〉 → e−iχσ(1)
x σ(2)

x |Ψ〉. Apartfrom an uninteresting global additive phase, this may beonsidered to model the time evolution of a Hamiltonianof the form σ
(n)
x σ

(n+1)
x .Further, it is well known that single rotations in anybasis, whih orrespond to the evolution of a spin opera-tor, are easily implementable on suh an arhiteture[13℄.They result in unitary transformations of the form

Usingle = e−i~θσ(1)
x (3)whih an be implemented trivially through a single Ra-man pulse.Following Feynman's original intentions for quantumomputing, one may onsider the mapping of Hamilto-nian with suh terms onto an ion-trap quantum om-puter. Turning this problem around, we will onsider theproperties of a unitary map omposed of terms whih anbe experimentally implemented, and investigate their re-lationship with the transverse Ising spin hain.C. Quantum Phase Transitions and UniversalityClassesThe quantum phase transition in the one dimensionaltransverse Ising model[18℄ is very well understood. TheHamiltonian is given by:

HIsing =
N

∑

n=1

µBσ(n)
x + Jσ(n)

z σ(n)
z (4)It is known that for an external �eld with interationstrength µB and loal exhange interation term with

strength J , that a phase transition ours for µB = ±J .One an intuitively onsider the phase transition as aresult of the inongruent symmetries between the twophases, whih is re�eted in the di�erene in behaviourof the two terms in the Hamiltonian under the transfor-mation σn → −σn. In the regime J > µB, the systemis in a ferromagneti phase, with 〈

σ
(n)
x

〉

6= 0, and thesystem displays long range order. On the other hand, for
J < µB, the system is paramagneti, with〈

σ
(n)
x

〉

= 0,and there is no broken symmetry.Using arguments from renormalization group theory,we may plae a great number of related problems intothe same universality lass[19℄, and we may expet to seea similar phase transition our in a number of relatedsystems. II. THE MODELIn the following, we will put together the omponentsintrodued in Setion I in a intuitive way. We onsiderthe omposition of the two unitary maps, similar to thosedemonstrated in Ref [11℄, whih orresponds to the om-position of the time evolution of two Hamiltonians. Inform, it will look similar to the one-dimensional trans-verse Ising hain Hamiltonian. We will then apply theJordan-Wigner transformation to this model to expressthe Hamiltonians in terms of non-interating fermions.We are then able to perform a omposition of operatorsin an SU(2) representation to yield a single Hamiltonian.We will �nd that this model is highly non-loal. How-ever, using renormalization group theory onepts, it anbe shown that the Hamiltonian belongs in the same uni-versality lass as the transverse Ising hain. Hene, weonlude that our separated model has the same quan-tum phase transition as the transverse Ising hain, eventhough we have implemented the map in a muh simplerway. A. Model Unitary Transformation andExperimental RealizationIt is natural to deompose the Ising Hamiltonian,
HIsing into two distint parts:

Hχ = χ

N
∑

n=1

σ(n)
z σ(n+1)

z (5)
Hθ = θ

N
∑

n=1

σ(n)
x (6)These parts are of even and odd symmetry under

~σn → − ~σn, respetively. Unitary maps of the form
|Ψ〉 → eiHχ,θ |Ψ〉 have been realised experimentally. It is



3impossible to perform them both at the same time withonly single qubit rotations and two qubit gates, beausethey do not ommute - the evolution of the ombinedHamiltonian is not the omposition of the evolutions ofboth Hamiltonians. Note however that terms σ
(n)
z σ

(n+1)
zand σ

(m)
z σ

(m+1)
z do ommute, and so

eiHχ =
N
∏

n=1

eiχσ(n)
z σ(n+1)

z (7)is realisable in priniple with urrent tehnology.The ombined Hamiltonian may be approximated byLloyd's[7℄ methods, whih involves applying terms suhas 1
mHχ and 1

mHθ repeatedly, m times. However thisrequires a large overhead - instead we will onsider theunitary map
U(χ, θ) = e−iHχe−iHθ = e−iH̄ 6= e−i(Hχ+Hθ) (8)This map has been proposed by Milburn et al. [17℄as an easier unitary map to to simulate than the mapwhih orresponds to the time evolution of transverseIsing hain Hamiltonian. We are interested in whetherthis mapping will have the same quantum phase transi-tion behaviour as the transverse Ising hain.B. Jordan-Wigner TransformationWe will follow Jordan and Wigner[20℄ in using the fol-lowing de�nitions to introdue a new set of operators, an,where

σ(n)
x = 1 − 2ana†

n (9)
σ(n)

y = −i(an − a†
n) (10)

σ(n)
z = a†

n + an (11)where σ
(n)
x , σ

(n)
y and σ

(n)
z take the form of the Pauli spinmatries in the |0〉,a†

n |0〉 basis. From these de�nitions,the operators an and a†
n an be shown to obey the fol-lowing relations:

{a†
n, an} = 1, a2

n = 0, a†2
n = 0,

[a†
m, an] = 0, [a†

m, a†
n] = 0, [am, an] = 0, m 6= nWith these de�nitions, our unitary map beomes

U(χ, θ) = e−iχ
∑

N
n=1 a†

na†
n+1+anan+1+ana†

n+1+a†
nan+1(12)

e−iθ
∑

N
n=1 1−2ana†

nWe then introdue the following operators

cn = eiπ
∑ n−1

j=1 a†
j
aj an (13)

c†n = a†
ne−iπ

∑ n−1
j=1 a†

j
aj (14)It an be shown that they obey fermioni anti-ommutation relations.We may understand these as an expression of domainwall reation and destrution. We an re-express U(χ, θ)with this new set of operators as

U(χ, θ) = e−iχ
∑ N

n=1 c†nc†
n+1−cncn+1−cnc†

n+1+c†ncn+1(15)
e−iθ

∑

N
n=1 c†ncn−cnc†nFinally, we will de�ne the Fourier transformed versionsof the fermion operators as

cn =
1√
N

∑

k

Ckeink (16)
c†n =

1√
N

∑

k

C†
ke−ink (17)However, it is important to take note of the bound-ary terms. Stritly, in order to have Eqs. (8) and (12)idential, we must make the identi�ation[21℄

cN+1 = c1(e
i
∑

N
j=1 c†

j
cj + 1)It may be argued that in the thermodynami limit, thisterm will be irrelevant, and we may make the identi�a-tion cN+1 = c1.Due to yli boundary onditions, we will require kto take the disrete values

k =
2πm

L
, m = −L

2
, ...,−1, 0, 1,

L − 2

2These operators satisfy fermion anti-ommutation re-lations:
{Ck, C†

l } = δkl

{Ck, Cl} = {C†
k, C†

l } = 0Using the de�nitions of cn and c†n, and the thermody-nami limit we an re-write U(χ, θ) as
U(χ, θ) = e−iχ

∑

k
2 cos kC†

k
Ck−i sin k(C†

k
C†

−k
+CkC−k)(18)

e−iθ
∑

k
(2C†

k
Ck−1)where we require the thermodynami limit so that theproperty 2

∑

k C†
kCk =

∑

k(C†
kCk + C†

−kC−k) holds.To simplify matters, let us further de�ne



4
Âk = χ(2 coskC†

kCk − i sink(C†
kC†

−k + CkC−k))(19)
B̂k = θ(2C†

kCk − 1) (20)suh that we may write
U(χ, θ) = e−i

∑

k Âke−i
∑

k B̂k = ΠkUk(χ, θ) (21)where Uk(χ, θ) ≡ e−iÂke−iB̂k .We have now ompletely deoupled the problem, andmay express the operators Âk and B̂k in the basis
|0〉 , C†

k |0〉 , C†
−k |0〉 , C†

kC†
−k |0〉. It is be possible to �ndeigenstates of U(χ, θ) in losed form in this basis.C. CombiningHowever, it would be nie to be able to express U(χ, θ)as a single exponential. While Âk and B̂k do not om-mute, it turns out that there is a faithful representationin SU(2), if we make the following de�nitions :

ν
(k)
1 = −i(C†

kC†
−k + CkC−k)

ν
(k)
2 = (−C†

kC†
−k + CkC−k)

ν
(k)
3 = C†

kCk + C†
−kC−k − IHene, we an express Âk = χ(cos k + ~α. ~νk) and B̂k =

θ~βk.~νk, where ~αk = χ(sin k, 0, cosk) and ~βk = θ(0, 0, 1).We have that [ν
(k)
l , ν

(k′)
m ] = −2iǫl,m,nν

(k)
n δk′

k where ǫl,m,nis the Levi-Civita symbol, so that {ν(k)
1 , ν

(k)
2 , ν

(k)
3 } havethe same properties as the SU(2) matries {σ1, σ2, σ3}.Relating the fermioni operators to SU(2) in this waywas inspired by a similar approah in the theory ofsuperondutors[22℄.

SU(2) is losed under omposition with a well under-stood omposition relation, whih we an now apply toour system[23℄
Uk(χ, θ) = e−iχ~αk. ~νke−iθ~βk. ~νk = e−i cos ke−iκk~γk(χ,θ). ~νk(22)where

~γk(χ, θ) = (sin k cos θ sin χ,− sink sin θ sin χ, (23)
(sin θ cosχ + cos k cos θ sin χ))

κk =
cos−1 ηk
√

1 − η2
k

(24)
ηk = cos θ cosχ − cos k sin θ sin χ (25)

= cos2
k

2
cos(θ + χ) + sin2 k

2
cos(θ − χ)This omposition has the simple physial interpreta-tion of two rotations being omposed, and the result an

be derived using quaternion omposition[24℄. However,when using quaternions, speial are has to be given tothe double over of SO(3) under SU(2). The seondequality of Eq. (22) de�nes an e�etive Hamiltonian,
H̄k, and we stress that H̄k 6= Âk + B̂k beause Âkand B̂kdo not ommute.Hene, we have the �nal form of the deoupled, andombined transformation

U(χ, θ) = ΠkUk(χ, θ) = e−i
∑

k
κk~γk(χ,θ). ~νk (26)Hene, we have found that the e�etive Hamiltonian ,

H̄, de�ned in Eq (8) is given by H̄ =
∑

k κk~γk(χ, θ). ~νkWe now hek the limit χ → 0, whih implies
κ → θ

sin θ , and ~γk → {0, 0, cosk sin θ}. Hene
U(χ, θ) = e−i

∑

k
θ

sin θ
sin θ cos kν3 = e−iθ

∑

k
−i
2 σxσy−σyσx =

e−iθ
∑

k
−i
2 2iσxσy = e−iθ

∑

k σz . On the otherhand, in the limit θ → 0, κ = χ
sin χ , and

~γk = {sinχ sin k, 0, sinχ cos k}. Hene U(χ, θ) =
e−iχ

∑

k
sin kν1+cosk ν3 . Thus, we retrieve the expeted be-haviour in the limit as we turn o� either the exhange orexternal �eld terms.Having expressed U(χ, θ) in this form, it is now possi-ble to show that it diretly orresponds to some physialHamiltonian. We may perform a Bogoliubov transforma-tion by de�ning some fermion reation operator

γkγ†
k = ~γk(χ, θ). ~νk (27)with assoiated energy, ǫk = κk. Hene, we may onsiderour ground state as a vauum state |0 >, and exitationsas γ†

k |0〉. It is important to note here that the exitationsof lowest energy will our at an extremum of ǫk. We anshow that this ours at k = 0, π by noting that
∂ǫk

∂k
=

∂κk

∂k
=

∂κk

∂ηk

∂ηk

∂k
(28)from whih it follows that

∂ηk

∂k

∣

∣

∣

∣

k=0,π

= sin k sin θ sin χ|k=0,π = 0 (29)Hene, the elementary exitations will be for k = 0 or
k = π, whihever orresponds to a lower energy.D. Closed-form HamiltonianWe an now work bakwards from our expression for
U(χ, θ) to a single ombined Hamiltonian. The resultshere will only be valid in the thermodynami limit, whihwe have assumed in the previous setion. Before doingso, we should present a list of identities whih will proveto be useful.



5
∑

k

eiakν
(k)
1 = i

∑

n

c†nc†n+a − cncn+a

∑

k

eiakν
(k)
2 = −

∑

n

c†nc†n+a + cncn+a

∑

k

eiakν
(k)
3 =

∑

n

2c†ncn − I

∑

k

ν
(k)
1 = 0 ,

∑

k

cos(ak)ν
(k)
1 = 0

∑

k

sin(ak)ν
(k)
1 =

∑

n

c†nc†n+a − cncn+a

∑

k

ν
(k)
2 = 0 ,

∑

k

cos(ak)ν
(k)
2 = 0

∑

k

sin(ak)ν
(k)
2 = i

∑

n

(c†nc†n+a + cncn+a)Now, reall that
U(χ, θ) = e−i

∑

k
κk~γk(χ,θ).~νk (30)However, κk is an even funtion of k, and so an beexpanded in terms of a Fourier series involving cos k. Letus write

κk =

∞
∑

l=0

al cos(lk) (31)
U(χ, θ) = e−i

∑

k,l al cos(lk)~γk(χ,θ).~νk (32)We will now substitute our expression for ~γk and ex-pand.
U(χ, θ) = e−i

∑

k,l
al cos lk ~γk(χ,θ).~νk (33)

= e−i(Λ1+Λ2+Λ3) (34)
= e−iH̄ (35)where

Λ1 = cos θ sin χ
∑

k,l

al sin k cos(lk)ν
(k)
1 (36)

Λ2 = − sin θ sinχ
∑

k,l

al sin k cos(lk)ν
(k)
2 (37)

Λ3 = sin θ cosχ
∑

k,l

al cos(lk)ν
(k)
3 (38)

+ cos θ sin χ
∑

k,l

al cos k cos(lk)ν
(k)
3and the sum over l ranges 1, 2, 3...We may rewrite this as

Λ1 = cos θ sinχ
∑

k,l

al[sin(l + 1)k − sin(l − 1)k]ν
(k)
1 (39)

= cos θ sinχ[a0(c
†
nc†n+1 − cncn+1) (40)

+
∑

n,l

(al+1 − al−1)

2
(c†nc†n+l − cncn+l)]

Λ2 = − sin θ sin χ
∑

k,l

al[sin(l + 1)k − sin(l − 1)k]ν
(k)
2(41)

= −i sin θ sin χ
∑

n,l

[ao(c
†
nc†n+1 + cncn+1) (42)

+
∑

l

(al+1 − al−1)

2
(c†nc†n+l + cncn+l)]

Λ3 = sin θ cosχ
∑

k,l

al cos(lk)ν
(k)
3 (43)

+ cos θ sin χ
∑

k,l

al[cos(l + 1)k + cos(l − 1)k]ν
(k)
3

= sin θ cosχ
∑

l

[al(c
†
ncn+l − cnc†n+l)] + (44)

+ cos θ sin χ
∑

n,l

[a0(c
†
ncn+1 − cnc†n+1)

+
(al+1 − al−1))

2
(c†ncn+l − cnc†n+l)]Therefore, the quantum spin hain Hamiltonian H̄whih represents a physial system orresponding to theseparated unitary map (8) is highly non-loal. Termssuh as cnc†n+a = ane−iπ

∑ n+a−1
j=n

aja†
j a†

n+a for a > 1 willnot only involve an, an+a, but also cm and c†m ∀n < m <
n + a.If we de�ne

σ
(n)
+ =

σ
(n)
z + iσ

(n)
y

2

σ
(n)
− =

σ
(n)
z − iσ

(n)
y

2we an write cnc†n+a as σ
(n)
+ e−iπ

∑ n+a−1
j=n

1−σ
(j)
x

2 σ
(n+a)
− , ex-pliitly showing the dependene on non-neighbouringspins. E. Range of the InterationsTo be in the universality lass of the Ising model, wewould expet the non-loal terms, al to derease expo-nentially with separation l. Thus, when viewed at largerlength sales, the non-loal terms would beome irrel-evant. The behaviour of an for a variety of θ = χ isalulated numerially and presented in Fig. 1. The asefor θ 6= χ is similar, and displays the same exponential
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2 4 6 8 10 12

0.001

0.01

0.1

1

Θ=1.3,Χ=1.4

Θ=Χ=1.3

Θ=1.3,Χ=1.2

Θ=Χ=1.4

Θ=Χ=1.5

Θ=Χ=1.7

Figure 1: The behaviour of Fourier oe�ients an, as de�nedin Eq. 32, for n = 1, 2...10 for a variety of θ and χ. Note thatthe larger ∣

∣χ − π
2

∣

∣ and ∣

∣θ − π
2

∣

∣, the larger the deay. The ex-ponential deay in these oe�ients implies that the intera-tions in the Hamiltonian are short-ranged, and suggests thatrenormalization tehniques should be highly e�etive in thismodel.derease in al with l. Hene, we may naturally expetnearest-neighbour interations to be the most importantinterations in this model - an idea whih we will makeonrete in the following setion.Deriving an analyti expression for an seems to be verydi�ult. However it is possible to show a general depen-dene on θ and χ of the form sinn θ sinn χ for any par-tiular n. We an expand κk in terms of ηk, where ηk isde�ned in Eq. (25), as
κk =

∞
∑

p=0

2p−qΓ2(p+1
2 )

Γ(p + 1)
ηp

k =

∞
∑

p=0

cpη
p
k (45)where Γ is the Euler gamma funtion. In turn, ηp an beexpressed as a series in terms of cosq k as

ηp
k =

p
∑

q=0

(

p
q

)

(cos θ cosχ)p−q(− cos k sin θ sin χ)q(46)
=

p
∑

q=0

dp,q cosq kFinally, we an express cosq k in terms of cos rk. Forthe ase of q even, this is
cosq k =

q
∑

r=0,r∈evens

(

q
q−r
2

)

cos rk

2q−1
+ c (47)

=

q
∑

r=0

eq,r cos rkwhere c is an unenlightening onstant, and a similar ex-pression holds for p − q odd.

We an ombine Equations (45),(46) and (47) to yieldan expression for κk

κk =
∞
∑

p=0

cpη
p =

∞
∑

p=0

p
∑

q=0

q
∑

r=0

cpdp,qeq,r cos rk (48)from whih we an read the oe�ient al of cos lk as
al =

∞
∑

p=0

cpη
p =

∞
∑

p=0

p
∑

q=0

cpdp,qeq,l (49)However, eq,l is only non-zero for q > l, and so we anreplae ∑p
q=0 with ∑p

q=l to yield
al =

∞
∑

p=0

cpη
p =

∞
∑

p=0

cp

p
∑

q=l

dp,qeq,l (50)whih involves terms in dp,q ∝ (sin θ sin χ)q(cos θ cosχ)sfor q > l. Hene, for any given al, there is a behaviourproportional to (sin θ sin χ)l.Of physial interest is the behaviour of al with respetto l for a given θ and χ. We will attempt to fator outany behaviour in l by noting that sine dpq, eq,l < 1, wean write
al =

∞
∑

p=0

cp

p
∑

q=l

dp,qeq,l (51)
≤

∞
∑

p=0

cp

p
∑

q=l

dp,q

p
∑

q=l

eq,lHowever, if we turn our attention to the sum over dp,q,we an onstrut a further limit on al

p
∑

q=l

dp,q =

p
∑

q=l

(

p
q

)

(cos θ cosχ)p−q(− cos k sin θ sin χ)q(52)
≤

p−l
∑

q′=0

(

p
q′ + l

)

(cos θ cosχ)p−q′−l(sin θ sinχ)q′+l(53)
≤

p−l
∑

q′=0

(

p − l
q′

)

(cos θ cosχ)p−l−q′

(sin θ sin χ)q′+l(54)
≤ (sin θ sinχ)l(cos θ cosχ + sin θ sinχ)p−l (55)
≤ (sin θ sinχ)l (56)Leading to our stritest inequality for al, showing anexponential deay in l

al ≤ (sin θ sin χ)l
∞
∑

p=0

cp

p
∑

q=l

eq,l (57)
≤ (sin θ sin χ)l(

∞
∑

p=0

cpp max
q

eq,l) (58)



7The ase θ, χ → π
2 has asymptotially onstant al.However, for θ, χ 6= π

2 , we an say that
al ≤ ke−µl → 0 as l → ∞ (59)where µ = ln(sin θ sinχ). Thus the terms in our model

H̄ has only short range interations.F. Renormalizing the HamiltonianWe have seen that the Hamiltonian, H̄ , assoiatedwith the omplete unitary U is very ompliated and in-volves non-loal interations. Hene, we are fored to userenormalization group methods to extrat the interestingphysis from this ase.Consider the ontinuum limit of the Hamiltonian, H̄ ,whih is appliable in the thermodynami limit. Nearritiality, the physis will be driven by long-wavelengthe�ets, whih suggest that the wavevetor k will be small.The relevant exitations at low temperature happen atthe extremum of ǫk, whih we have shown ours at
k = 0. Hene, in the ontinuum limit, we an onsideronly low lying states, near k = 0. Under these approxi-mations, our Hamiltonian beomes

H̄ ≃ H̄ ′ =
∑

k

κ̄~̄γk(χ, θ).~νk (60)
~̄γk = (k cos θ sin χ,−k sin θ sin χ, sin(θ + χ))(61)
κ̄ =

θ + χ

sin(θ + χ)
(62)whih yields in terms if the fermion operators

H̄ ′ =
∑

k

ik
(θ + χ) sinχ

sin(θ + χ)
(eiθC†

kC†
−k + e−iθCkC−k)(63)

+2(θ + χ)C†
kCkDe�ning the ontinuum Fermi �eld[25℄ as
Ψ(xi) =

1√
a
ci (64)where a is the lattie spaing. Ψ(x) satis�es the usualanti-ommutation relation {Ψ(x), Ψ†(x′)} = δ(x − x′).Note that we an replae the sum over k with an integral,by making the substitution

∑

k

a →
∫

dxFurther, we expand the terms C†
kC†

−k and CkC−k intoterms of �rst order gradients ∂Ψ†

∂x and ∂Ψ
∂x through theuse of identities (Chapter 4 of Ref. [18℄). This yields

H̄ ′ ≃ H̃ = E0 +

∫

dx[
(θ + χ) sin χ

sin(θ + χ)
(eiθΨ† ∂Ψ†

∂x
− e−iθΨ

∂Ψ

∂x
)(65)

−2(θ + χ)Ψ†Ψ]and E0 is some onstant.Applying the transformation Ψ → ei θ
2 Ψ, we have that

H̃ = E0 +

∫

dx[
(θ + χ) sin χ

sin(θ + χ)
(Ψ† ∂Ψ†

∂x
− Ψ

∂Ψ

∂x
)(66)

−2(θ + χ)Ψ†Ψ]If we do not perform this transformation, we will haveterms of the form ∫

dx∂Ψ†

∂x + Ψ∂Ψ
∂x in the Hamiltonian.One an show that these terms orrespond to intera-tions of the form σ

(n)
z σ

(n+1)
y + σ

(n)
y σ

(n+1)
z . Chapter 4 ofRef. [25℄ has further details regarding these sorts of hiralsymmetries in systems.One an show that the Lagrangian orresponding tothis Hamiltonian will then be

L̃ = Ψ† ∂Ψ

∂τ
+

(θ + χ) sin χ

sin(θ + χ)
(Ψ† ∂Ψ†

∂x
− Ψ

∂Ψ

∂x
) (67)

−2(θ + χ)Ψ†Ψwhere τ is imaginary time.Now we introdue the ruial step where we onsider-ing the e�et of saling the problem. If we onsider thee�et of viewing the problem at a sale δl more oarse inspae, and δzl more oarse in time, we an introdue thenew variables
x′ = xδ−l (68)
τ ′ = τδ−zl (69)
Ψ′ = Ψδl/2 (70)We hoose the value of the dynami ritial expo-nent, z, to be identially equal to 1, orresponding toan isotropy between spae and time, in order to leave theveloity-like oe�ients of Ψ† ∂Ψ†

∂x and Ψ∂Ψ
∂x unhanged.For ritiality to hold, these saling onditions mustleave the Lagrangian unhanged. This ours only whenthe quantity θ + χ is identially zero. This happens for

θ = −χ, exatly as in the transverse Ising model.Formally, if we write
L̃ = Ψ† ∂Ψ

∂τ
+ u(Ψ† ∂Ψ†

∂x
− Ψ

∂Ψ

∂x
) + ∆Ψ†Ψ (71)we will require that

∆′ = ∆δl (72)
u′ = u (73)



8implying that the saling dimension of the term
∆Ψ†Ψ,dim(∆) = 1. Hene, u, and ∆ are relevant pa-rameters, having non-negative saling fators.If we inlude seond (or higher) order e�ets in k, wewill inlude terms of the form ∆′Ψ† ∂2Ψ

∂x2 or ∆′′Ψ† ∂Ψ†

∂x
∂Ψ
∂x Ψ(or higher derivatives). From a simple analysis, one anshow that the parameters ∆′ and ∆′′ are irrelevant, asthe saling dimensions are[18℄

dim(∆′) = −1 , dim(∆′′) = −2Reall the Ising hain in a transverse �eld, Eq. (4),given by
HIsing =

N
∑

n=1

µBσ(n)
x + Jσ(n)

z σ(n+1)
z (74)

=
∑

k

2BC†
kCk + 2J cos kC†

kCk (75)
+iJ sink(C†

kC†
−k + CkC−k)The Lagrangian for this model has the form

LIsing = Ψ† ∂Ψ

∂τ
+ 2(B + J)Ψ†Ψ − J(Ψ† ∂Ψ†

∂x
− Ψ

∂Ψ

∂x
)(76)Hene, we may make an assoiation between the twomodels through the mapping

J = − (θ + χ) sin χ

sin(θ + χ)
(77)

B + J = θ + χ (78)Thus we onlude that our ontinuum Hamiltonian H̃belongs in the same universality lass as the transverseIsing Hamiltonian, HIsing . Hene it is possible to aessthe physial properties at ritiality of this well knownmodel in a very straight forward manner. The ruial as-sumptions whih have been made are the assumption ofoperation in the thermodynami limit, and the low tem-perature (and hene small k exitation) regime, both ofwhih are neessary for renormalization to work. We willshow in the next setion that for moderate N , the signa-tures of quantum phase transitions are still observable.III. SIGNATURES OF A QUANTUM PHASETRANSITIONThe �rst experimental realisations of a quantum sim-ulations will perhaps be seen on ion trap quantum om-puters. In this setion we review a few basi experimentalsignatures whih may be seen in an ion trap laboratory.

A. Ground State EnergyReall that we have the following unitary map whihdesribes the system in terms of non-interating fermions:
U(χ, θ) = e−i

∑

k
κk~γk(χ,θ). ~νk (79)By inspetion, the orresponding Hamiltonian is givenby:

H̄ =
∑

k

κk~γk(χ, θ). ~νk (80)We note that eigenstates of H̄ are simply produts ofthe eigenstates of H̄k, where H̄k = κk~γk(χ, θ). ~νk. In thebasis |0〉 , C†
k |0〉 , C†

−k |0〉 , C†
kC†

−k |0〉, there will be fouromplex eigenvalues {λ(i)
k , i = 1, 2, 3, 4}, with arguments

{ω(i)
k , i = 1, 2, 3, 4}. Let us de�ne the argument of a totalsystem state, Ω(i) =

∑

k ω
(i)
k , where we form an eigen-state of H̄ from mathing eigenstates of H̄k. Physially,we assoiate the argument of this state with energy.Now, we will onsider the mapping

χ → r cosφ , θ → r sin φwhere φ an be onsidered as a relative strength betweenexhange and �eld oupling terms, and r is an overallstrength. The Ising ritiality ondition θ = ±χ is now
φ = ±π

4 ,± 3π
4 .In Fig. 3, we observe an sharp peak in the seondderivative of the ground state energy, Ω(1), with respetto φ. In the thermodynami limit, this would beomea singularity, indiating a seond order phase transition.Further, we observe that this ondition ours for φ =

±π
4 ,± 3π

4 , whih orresponds to the Ising transition.We will demonstrate the nature of this singularity ex-pliitly, by noting that the argument of the ground stateenergy is
ω

(1)
k = −κ

√

(cos k cos θ sin χ + sin θ cosχ)2 + (sin k sin χ)2(81)
= cos−1 ηk ≡ Ek (82)The next two eigenvalues are equal to 1, and hene

ω
(2)
k = ω

(3)
k = 0. The highest exited eigenstate has

ω
(4)
k = −ω

(1)
k by symmetry.Substituting θ → r cosφ and χ → r sin φ, we evaluate

∂2Ω(1)

∂φ2

∣

∣

∣

∣
φ=±π

4 ,± 3π
4

≃ 2N

π

∫ π− π
N

0

(cos k − 1)dk
√

1 − (cos2 r√
2
− cos k sin2 r√

2
)2

(83)We �nd that the residue of the integrand is 4
sin r/

√
2
,and hene has a 1

k singularity. We an now onlude that



9in the limit as N → ∞, the value of ∂2|Ω(1)|
∂φ2

∣

∣

∣ φ=±π
4 ,± 3π

4will be in�nite, with a logarithmi singularity.Alternatively, following Ref. [26℄ and expressing Ek as
Ek = cos−1 ηk (84)

= cos−1(cos2
k

2
cos(θ + χ) + sin2 k

2
cos(θ − χ))Bunder and MKenzie[26℄ note that for some wave ve-tor k, Ek = 0, orresponding to a vanishing energy gap inthe system. When Ek is expressed as Eq (84), it is learthat there will be no energy gap for k = 0 if θ = −χ andfor k = π if θ = χ. Without loss of generality, we anonsider the k = 0 ase, as the other is symmetri. Sinethe relevant exitations are at k ≃ 0, we may use Eq (84)to expand E2

k as a series in k

E2
k ≃ (θ + χ)2 + k2 (θ + χ)(cos θ + χ − cos θ − χ)

2 sin(θ + χ)
(85)

≡ ξ2 + k2ζ2and the ground state will have energy
E0 =

−1

2π

∫ kc

−kc

dk
√

E2
k (86)where kc is a uto� wavevetor. While analytial solu-tions are possible, it is unenlightening to solve this prob-lem. Instead, we an set out to determine the behaviourof the energy with respet to a variable ξ2 by using theinde�nite integral

E0 = −
∫

dξ2 ∂

∂ξ2
E0 (87)Carrying this out we obtain

E0 =

∫

dξ2 ∂

∂ξ2
E0 (88)

=
−1

4π

∫

dξ2

∫ kc

−kc

dk
1

√

ξ2 + k2ζ2

=
−1

4π

∫

dξ2−2

ζ
(1 − ln

ξ

2ζkc
)

=
−ξ2

2πζ
(1 − 2 ln

ξ

2ζkc
)Thus we on�rm the logarithmi nature of this sin-gularity, and �nd that E0 ∼ −ξ2−α where we have thevalue of the ritial exponent α = 0+. This is the samebehaviour as that found in the transverse Ising model[26℄,whih we expet by their inlusion in the same universal-ity lass.One an see the behaviour of ∂2Ω(1)

∂φ2 with respet to φin Fig. 2 for N = 200 and r = 1.9. There exists a quan-tum phase transition at φ = ±π
4 ,± 3π

4 as evidened by
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Figure 2: The seond derivative of the phase of the eigenvaluesfor the model Hamiltonian H̄ (solid), based on Eq. (22), andfor the transverse Ising Hamiltonian, HIsing (dashed), as afuntion of φ = tan−1 χ

θ
. Note that both show singularitiesat θ = ±χ. ∣

∣θ2 + χ2
∣

∣ = r was hosen to be 1.9 so as tohighlight the di�erenes between the plots. For smaller θ and
χ, the ommutator between Hθ and Hχ beomes small, andthe model beomes asymptotially loser to the Ising model.Fig. 1 shows that the smaller θ and χ, the faster the model'snon-neighbour parameters deay.
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Figure 3: The seond derivative of the ground state energy ofa 6 qubit model as a funtion of φ = tan−1 χ

θ
, for r = 1.9. Themaximum value is attained at φ = π

4
, the value at whih aquantum phase transition ours in the thermodynami limit.While we see a strong maximum, in the thermodynami limit,we expet to see a singularity.the singularity in ∂2Ω(1)

∂φ2 . This numerial modeling or-responds to our theoretial expetation for the positionsof the phase transitions. For a �nite set of qubits, onean learly see the peak in the seond derivative of theenergy with respet to φ in Fig. 3.B. EntanglementIt has reently been shown that entanglement salesnear a quantum ritial point [27, 28℄. Quantum phasetransitions are driven by quantum �utuations[18℄, andentanglement is a natural manner for non-loal e�etsto manifest themselves. As entanglement is a physial



10
Π
����
8

Π
����
4

3 Π
��������
8

Π
����
2

Φ

20

40

60

80

¶E
��������
¶Φ

Figure 4: The derivative of the nearest neighbour entangle-ment, with respet to φ for a 6 qubit model. Note that this hasa maximum very lose to the ritial point φ = π
4
. We expetto see the nearest neighbour onurrene vary as log |φ − φc|in the thermodynami limit.resoure, it may be diretly measured, by a number ofshemes[29, 30℄.We denote the nearest neighbour entanglement in theground state by E . In the transverse Ising model, we seethat the derivative of entanglement with respet to φ, ∂E

∂φ ,near ritiality to sale as a funtion of |φ − φc|. Sinewe are in the same universality lass, we expet to seeidential behaviour in this model. However, experimen-tally, isolating the ground state of the system to observethis may be very di�ult.C. Spetrosopi Measurement of EigenvaluesExperimentally, it is possible that an ion trap may beused to implement the unitary map of the form
|Ψ〉 → e−iχ

∑

N
n=1 σ(n)

z σ(n+1)
z |Ψ〉 ≡ |Ψ′〉followed by another map of the form

|Ψ′〉 → e−iθ
∑

N
n=1 σ(n)

x |Ψ′〉 ≡ |Ψ′′〉Let us introdue the notation
∣

∣

∣
Ψ(m)

〉

≡ Um |Ψ〉where ∣

∣Ψ(m)
〉 is the state after we repeat this unitarymap, U , m times.The state |Ψ〉 an be deomposed as
Um |Ψ〉 =

∑

n

|φn〉〈φn|Um|Ψ〉 (89)
=

∑

n

|φn〉〈φn|Ψ〉eimEn (90)

where |φn〉 are the eigenstates of U , with �energy� En.Without loss of generality, we assume these are orderedwith
E0 < E1 < . . . < EM−1where M = 2N .We an proeed to measure Um |Ψ〉 in some set of basisstates, |i〉, whih will typially be binary omputationalbasis states. Hene, we an measure

|〈i|Um|Ψ〉|2 =

∣

∣

∣

∣

∣

∑

n

〈i|φn〉〈φn|Ψ〉eimEn

∣

∣

∣

∣

∣

2 (91)
=

∑

n,n′

〈i|φn〉〈i|φ〉∗n′ 〈φn|Ψ〉〈φn′ |Ψ〉∗eim(En−En′) (92)If we perform a Fourier transform of |〈i|Um|Ψ〉|2 over
m, we expet to see peaks around the allowable transi-tion energies En −En′ . A numerial simulation of this isshown in Fig. 6 for 4 qubits. Let us de�ne

Fn =

n−1
∑

m=0

e
i2πm

n |〈i|Um|Ψ〉|2 (93)to be these Fourier omponents.Sine we are onsidering Unitary maps, and not Hamil-tonians, we an only determine the eigenvalues of U towithin an additive onstant of 2π. Hene, in order thatthe Fourier omponents are not aliased (that the energylevels do not �wrap around� on themselves), we requirethe ground state to have an energy E0 > −π, and thehighest exited state to have an energy E2N < π. Sinethe energy is a funtion whih sales with O(N, θ, χ), werequire the ondition max(|θ| , |χ|) < kint

N where kint is
O(1). Keeping θ and χ small in this manner will en-sure that the energies will be resolvable uniquely by theFourier transform.If we have a given set of energy eigenvalues,
{

Ē0, Ē1 . . . ĒM−1

}, we an form the set of energy dif-ferenes, {

Ēi,j ≡ Ēi − Ēj

}. We an then alulate theFourier transform of these di�erenes, and ompare ourmeasured spetrum with the alulated spetrum. If wehave n ≫ M , then the problem is over determined, andwe an apply a least-squares method to reonstrut theoriginal energy spetrum (to within an additive onstant,and global sign hange). We may apply the LevenbergMarquardt algorithm[31, 32, 33℄ to perform this reon-strution in polynomial time with an initial guess at theset of energy eigenvalues.One ould hange the value of θ
χ over many experi-ments to tune the system through the ritial oupling.In the thermodynami limit, the energy gap to the �rstexited state would vanish at ritiality, but we see in
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4
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Figure 6: The Fourier transform of |〈i|Um|Ψ〉|2,Fm,2048, isshown as a vertial density, as funtion of the horizontal o-ordinate θ, for a �xed χ = 0.2, and 4 qubits. 4 qubits arehosen so as to provide a omplex, but not onfusing diagram.The white bands indiate a large Fourier omponent. Thesuperimposed grey lines show all energy di�erenes - note thatsome of these are disallowed. In this ase, 2048 samples areused in the Fourier series, and simulations are taken in stepsof 0.01 in θ. From this diagram, we an see the energy gapbetween the ground state and �rst exited state approahingzero. We an also see a level rossing, where one of the greylines is re�eted through the origin at θ ≃ 0.25.Fig. 5 that the ondition is not stritly met for a �nitenumber of qubits.One an use this to show that the energy gap, ∆, forthe exitation from the ground to �rst exited state obeys

the relation
∆ ∼ |φ − φc|γ (94)with γ = 1, as we expet from a standard treatment ofthe transverse Ising problem[18℄.1. Controlled-U SpetrosopyThe above method requires knowledge of the approxi-mate values of |〈i|Um|Ψ〉|2, whih means that a measure-ment with result |i〉 must be ahieved multiple times.In work by Miquel et al.[34℄, it has been shown thatspetrosopy an be ahieved muh more easily by im-plementing a ontrolled-U gate, and measuring only asingle qubit[35℄. We an ahieve this by using an anil-lary qubit, and express the ontrolled-U operation as

CU : 〈i| ⊗ 〈Ψ| → 〈i| ⊗ U i〈Ψ|where 〈i| an be either 〈0|, whih takes 〈Ψ| to 〈Ψ|, or 〈1|,whih takes 〈Ψ| to U〈Ψ|.If we do a weak measurement on the ontrol bit, weyield the result
〈σz〉 = ℜ [Tr(Uρ)] , 〈σy〉 = ℑ [Tr(Uρ)]where ρ is the density matrix orresponding to the statehas been prepared in. If we prepare it in the mixed stategiven by ρ = I/2n where I is the identity operator, weyield 〈σz〉 = ℜ [Tr(U)] /N , whih is proportional to thesum of the eigenvalues of U . If we repeat this for Um for avariety of m, we an use the method above to reonstrutthe energy level diagram.Further, Miquel et al.[34℄ propose a sheme using thequantum Fourier transform to probe spei� regions ofthe spetrum of the eigenvalues of U . This is ahieved byintroduing an e�etive time sale into U , and exploitingthe onjugay of energy and time.D. Phase Estimation AlgorithmIn work done by Abrams and Lloyd[36℄, and fur-ther explored in an ion trap ontext by Travaglione andMilburn[37℄, it has been shown that it is possible to esti-mate the eigenvalues assoiated with any unitary trans-formation, U . These orrespond diretly to the energyeigenvalues of the equivalent Hamiltonian, whih we areinterested in. The sheme also yields an approximateeigenvetor with high probability.Starting with a mixed index state |j〉I , and the stateof the target system |Ψ〉, we perform the transformation

Λ(U) : |j〉I |Ψ〉T → |j〉I ⊗ U j |Ψ〉T



12followed by a Fourier transformation on the index reg-ister. Measuring the index register will then yield, withhigh probability, an approximate eigenvetor of U in thetarget state, and information about the phase of theeigenvalue of U in the index register.Note, however, that use is made of an index register,whih is at least the same size as the system of interest.This makes it a muh more di�ult problem to onquerexperimentally, as a system twie as big will be muhmore prone to deoherene. In ion trap implementations,trapping twie as many ions will also be more di�ult.While this tehnique is superior to the spetrosopi mea-surements suggested in the previous setion, salabilityissues may keep it from being experimentally feasible forsome time. IV. CONCLUSIONWe have presented a number of key ideas whih willdrive our searh for a quantum phase transition in asystem whih is implementable on an ion-trap quantumomputer in a natural way.We have taken the Feynman thesis and turned itaround, to ask what might happen if we have some
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