5 research outputs found

    Higher Order Corrections to Black Hole Entropy

    Full text link
    A scheme for calculating corrections to all orders to the entropy of any thermodynamic system due to statistical fluctuations around equilibrium has been developed. It is then applied to the BTZ black hole, AdS-Schwarzschild black Hole and Schwarzschild black Hole in a cavity. The scheme that we present is a model-independent scheme and hence universally applicable to all classical black holes with positive specific heat. It has been seen earlier that the microcanonical entropy of a system can be more accurately reproduced by considering a logarithmic correction to the canonical entropy function. The higher order corrections will be a step further in calculating the microcanonical entropy of a black hole.Comment: 9 pages, Revised version to appear in Classical and Quantum Gravit

    Galaxy-Dark Matter Connection : Insights from Satellite Kinematics

    Get PDF
    A thorough knowledge of the connection between the mass of dark matter haloes and the properties of their central galaxies is crucial to understand the physics of galaxy formation. The kinematics of satellite galaxies is an excellent technique to measure the dark matter halo masses. However, the kinematics can be measured with high signal-to-noise only by stacking the signal around central galaxies with similar properties, which results in various systematic biases and complicates the interpretation of the signal. This thesis presents an analytical framework that accounts for systematic biases and selection effects and aids in the interpretation of the kinematics of satellite galaxies. A new method is established to obtain the average scaling relations between halo mass and central galaxy properties, and the scatter in these relations simultaneously. After a thorough testing of this method using a realistic mock galaxy catalogue, it is applied to the Sloan Digital Sky Survey to extract the halo mass-luminosity and halo mass-stellar mass relationship of central galaxies and their scatter. Comparisons with other probes of these scaling relations, such as galaxy-galaxy lensing, show good agreement which implies that these scaling relations are well established and supported by various astrophysical probes. Physical insights about these scaling relations, in particular their scatter, gained by the analysis of a semi-analytical model for galaxy formation are also presented. Finally, the inferred scaling relations crucially depend on the transparency of the Universe. By performing a test of the “Etherington relation” between the distances measured by standard rulers and by standard candles, a quantitative measure of the cosmic transparency, which is relatively free from astrophysical assumptions, is obtained

    The eleventh and twelfth data releases of the Sloan Digital Sky Survey : final data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new nearinfrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

    The tenth data release of the Sloan Digital Sky Survey : first spectroscopic data from the SDSS-III Apachhe Point Observatory galactic evolution experiment

    Get PDF
    The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ∼ 22,500 300 fiber spectrograph covering 1.514–1.696μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the MilkyWay. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg2

    The eleventh and twelfth data releases of the Sloan Digital Sky Survey : final data from SDSS-III

    No full text
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new nearinfrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra
    corecore