378 research outputs found

    Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6 crystals

    Get PDF
    We demonstrate selective fixing of volume holograms in photorefractive media. Each holographic page may be fixed individually and overwritten without destroying the other fixed pages. We present experimental results describing this process in Cr-doped Sr0.75Ba0.5Nb2O6 at room temperature, with hologram lifetimes exceeding 100 days during continuous readout with an intense beam (1 W/cm^2)

    Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media

    Get PDF
    We propose a new method of volume hologram multiplexing/demultiplexing in noncentrosymmetric media. Volume holograms may be multiplexed by tuning the material parameters of the recording medium (such as refractive index or lattice parameters) while keeping the external parameters (wavelength and angles) fixed. For example, an external dc electric field alters the index of refraction through the electro-optic effect, effectively changing the recording and reconstruction wavelengths in the storage medium. Then the storage of holograms at different fields, hence different indices of refraction, is closely related to wavelength multiplexing. We demonstrate this concept in a preliminary experiment by electrically multiplexing two volume holograms in a strontium barium niobate crystal

    Optical and electrical Barkhausen noise induced by recording ferroelectric domain holograms

    Get PDF
    Ferroelectric domain gratings with periods of the order of an optical wavelength are induced in strontium barium niobate by photorefractive space-charge fields. We measure the Barkhausen noise in current and diffraction efficiency while optically recording domain gratings and show that the two are strongly correlated in time. Significant random depolarization occurs under high-intensity illumination. We deduce the kinetics of the domain inversion process from the shape of the current transients

    Double Giant Dipole Resonance in ^{208}Pb

    Get PDF
    Double-dipole excitations in ^{208}Pb are analyzed within a microscopic model explicitly treating 2p2h-excitations. Collective states built from such 2p2h-excitations are shown to appear at about twice the energy of the isovector giant dipole resonance, in agreement with the experimental findings. The calculated cross section for Coulomb excitation at relativistic energies cannot explain simultaneously the measured single-dipole and double-dipole cross sections, however.Comment: 7 pages, Latex, 5 postscript figure

    Double-Dipole Excitations in 40Ca

    Get PDF
    The double-dipole strength distribution in 40^{40}Ca is calculated microscopically within a model space of 1p1h - and 2p2h excitations. Anharmonic effects in the centroid energies of the 0+0^+- and 2+2^+ components are found to be small, in agreement with experimental observation. Firm conclusions about the spreading width cannot be drawn, as yet, due to computational limitations in the number of 2p2h states.Comment: 8 pages of LaTeX, two figures available at ftp://rsm1.physcis.uiuc.edu/pub/figs

    Rock varnish evidence for a Younger Dryas wet period in the Dead Sea basin

    Get PDF
    Rock varnish from 14.6 to 13.2 ka recessional shorelines of late glacial Lake Lisan and fan delta surfaces between 280 and 365 m bmsl (meters below mean sea level) along the western margins of the Dead Sea contains replicable layering patterns, characterized by a low Mn and Ba orange/yellow surface layer and a high Mn and Ba dark basal layer. The deposition of the dark basal layers immediately after the lake recession represents a wet period coinciding with the Younger Dryas (YD) cooling (12.9–11.6 ka), manifesting the influence of midlatitude westerly winds in the eastern Mediterranean-central Levant (EM-CL). In contrast, varnish from the distal base of fan deltas contains only orange/yellow surface layers, diagnostic of the Holocene relatively dry climate. The absence of the dark basal layers in the varnish further indicates a YD high stand at ~365 m bmsl and a lake level rise of at least 100 m from its Bølling-Ållerød lowstand. This rise stands in contrast to the abrupt drop of the lake level during the Heinrich (H1) cold event, illustrating the opposite response of the EM-CL climate to changes in the North Atlantic climate. The YD wet event most likely reflects a southward shift of the Atlantic meridional overturning circulation-modulated midlatitude westerly wind belt in the EM-CL region

    Probing topological invariants in the bulk of a non-Hermitian optical system

    Full text link
    Topological insulators are insulating in the bulk but feature conducting states on their surfaces. Standard methods for probing their topological properties largely involve probing the surface, even though topological invariants are defined via the bulk band structure. Here, we utilize non-hermiticy to experimentally demonstrate a topological transition in an optical system, using bulk behavior only, without recourse to surface properties. This concept is relevant for a wide range of systems beyond optics, where the surface physics is difficult to probe

    Induced Coherence and Stable Soliton Spiraling

    Full text link
    We develop a theory of soliton spiraling in a bulk nonlinear medium and reveal a new physical mechanism: periodic power exchange via induced coherence, which can lead to stable spiraling and the formation of dynamical two-soliton states. Our theory not only explains earlier observations, but provides a number of predictions which are also verified experimentally. Finally, we show theoretically and experimentally that soliton spiraling can be controled by the degree of mutual initial coherence.Comment: 4 pages, 5 figure
    • …
    corecore