638 research outputs found

    Holocene-scale fire dynamics of central European temperate sprucebeech forests

    Get PDF
    This study investigated the long-term role and drivers of fire in the central European temperate sprucebeech forests from Prášilské Jezero, Czech Republic. The results illustrate the complex relationship between broad-scale climate, vegetation composition, and local human activities on fire throughout the Holocene. Biomass burning was the highest (average 3 fires/1000 years) and most severe during the early Holocene when fire resistant taxa (Pinus, Corylus and Betula) dominated. Using a Generalized Additive Model to assess the response of dominant canopy taxa to changes in biomass burning and fire severity, response curves demonstrate a positive relationship (p < 0.01) between fire resistant taxa and increases in biomass burning. Norway spruce (Picea abies) established ~10,000 cal yr BP and expanded during peak biomass burning. Response curves show a slight negative relationship with Picea and increasing biomass burning, and a positive relationship with increasing fire severity. This suggests that central European spruce forests may not be significantly impacted by fire. Regional biomass burning dramatically decreased with the expansion of fire sensitive taxa (e.g. Fagus sylvatica) ~6500 cal yr BP, yet no dramatic reduction in local fire frequency occurred. This suggests either human activities or rare fire-promoting climatic events were important in shaping local fire regimes. Fire activity peaked (6 fires/1000 years) ~2500 cal yr BP and paralleled increases in anthropogenic pollen indicators. Fagus response curves illustrates a negative (p < 0.01) relationship with increasing biomass burning and fire severity suggesting that natural Fagus forests may be increasingly vulnerable to projected increases in wildfire occurrence

    Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Full text link
    According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a Λ\Lambda hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the Λ\Lambda hyperon binding energy BΛB_{\Lambda} for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry
    corecore