85 research outputs found

    Anomalous spectral evolution with bulk sensitivity in BiPd

    Full text link
    We investigate the electronic structure of a noncentrosymmetric superconductor, BiPd using photoemission spectroscopy with multiple photon energies ranging from ultraviolet to hard x-ray. Experimental data exhibit interesting difference in the surface and bulk electronic structures of this system. While the surface Bi core level peaks appear at lower binding energies, the surface valence band features are found at the higher binding energy side of the bulk valence band; valence band is primarily constituted by the Pd 4d states. These changes in the electronic structure cannot be explained by the change in ionicity of the constituent elements via charge transfer. Analysis of the experimental data indicates that the Bi-Pd hybridization physics plays the key role in deriving the anomalous spectral evolution and the electronic properties of this system.Comment: Proceedings of DAE SSPS 201

    Coexistence of multiple silicene phases in silicon grown on Ag(111)

    Full text link
    Silicene, the silicon equivalent of graphene, is attracting increasing scientific and technological attention in view of the exploitation of its exotic electronic properties. This novel material has been theoretically predicted to exist as a free-standing layer in a low-buckled, stable form, and can be synthesized by the deposition of Si on appropriate crystalline substrates. By employing low-energy electron diffraction and microscopy, we have studied the growth of Si on Ag(111) and observed a rich variety of rotationally non-equivalent silicene structures. Our results highlight a very complex formation diagram, reflecting the coexistence of different and nearly degenerate silicene phases, whose relative abundance can be controlled by varying the Si coverage and growth temperature. At variance with other studies, we find that the formation of single-phase silicene monolayers cannot be achieved on Ag(111)

    Spin Selective Evolution of Zhang-Rice State in Binary Transition Metal Oxide

    Full text link
    The Zhang-Rice (ZR) state is a strongly hybridized bound state formed by the transition metal and oxygen atoms. The spin-fluctuations within the ZR state are known to play an important role in high-TcT_\mathrm{c} superconductivity in cuprates. Here, we employ a combination of angle-resolved photoemission spectroscopy (ARPES), X-ray photoemission spectroscopy (XPS), and {\it ab initio} embedded dynamical mean-field theory (eDMFT) to investigate the influence of magnetic ordering on the spectral characteristics of the valence band and Mn 2pp core-level in MnO (001) ultrathin films. Our results demonstrate that a complex spin-selective evolution of Mn 3dd−-O 2pp hybridization develops due to the long-range antiferromagnetic (AFM) ordering. This hybridization significantly alters the spectral shape and weight of the ZR state. Specifically, in the AFM phase, we observed the sharpening of the ZR state and band folding with the periodicity of the AFM unit cell of MnO(001). We also demonstrated a strong connection between the spectral evolution of the ZR state and the non-local screening channels of the photoexcited core holes. Further, our detailed temperature-dependent study reveals the presence of short-range antiferromagnetic correlations that exist at much higher temperatures than TNT_\mathrm{N}. Such comprehensive studies showing the evolution of the ZR state across the magnetic transitions and its implication to the core-hole screening have never been reported in any 3dd binary transition metal oxides.Comment: 8 pages, 4 figure

    Is graphene on copper doped?

    Get PDF
    Angle-resolved photoemission spectroscopy (ARPES) and X-ray photoemission spectroscopy have been used to characterise epitaxially ordered graphene grown on copper foil by low-pressure chemical vapour deposition. A short vacuum anneal to 200 °C allows observation of ordered low energy electron diffraction patterns. High quality Dirac cones are measured in ARPES with the Dirac point at the Fermi level (undoped graphene). Annealing above 300 °C produces n-type doping in the graphene with up to 350 meV shift in Fermi level, and opens a band gap of around 100 meV. Dirac cone dispersion for graphene on Cu foil after vacuum anneals (left: 200 °C, undoped; right: 500 °C, n-doped). Centre: low energy electron diffraction from graphene on Cu foil after 200 °C anneal. Data from Antares (SOLEIL)

    Two Distinct Phases of Bilayer Graphene Films on Ru(0001)

    Get PDF
    By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows to synthesize two distinct phases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer, displays weak vertical interaction and electron doping. The long-range ordered moir\'e pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has AA stacking sequence with respect to the first layer, displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly-freestanding character of this novel second layer phase

    Indirect chiral magnetic exchange through Dzyaloshinskii–Moriya-enhanced RKKY interactions in manganese oxide chains on Ir(100)

    Get PDF
    Localized electron spins can couple magnetically via the Ruderman–Kittel–Kasuya–Yosida interaction even if their wave functions lack direct overlap. Theory predicts that spin–orbit scattering leads to a Dzyaloshinskii–Moriya type enhancement of this indirect exchange interaction, giving rise to chiral exchange terms. Here we present a combined spin-polarized scanning tunneling microscopy, angle-resolved photoemission, and density functional theory study of MnO_2 chains on Ir(100). Whereas we find antiferromagnetic Mn–Mn coupling along the chain, the inter-chain coupling across the non-magnetic Ir substrate turns out to be chiral with a 120° rotation between adjacent MnO_2 chains. Calculations reveal that the Dzyaloshinskii–Moriya interaction results in spin spirals with a periodicity in agreement with experiment. Our findings confirm the existence of indirect chiral magnetic exchange, potentially giving rise to exotic phenomena, such as chiral spin-liquid states in spin ice systems or the emergence of new quasiparticles

    Controlling the topology of Fermi surfaces in metal nanofilms.

    Get PDF
    The properties of metal crystals are governed by the electrons of the highest occupied states at the Fermi level and determined by Fermi surfaces, the Fermi energy contours in momentum space. Topological regulation of the Fermi surface has been an important issue in synthesizing functional materials, which we found to be realized at room temperature in nanometer-thick films. Reducing the thickness of a metal thin film down to its electron wavelength scale induces the quantum size effect and the electronic system changes from three to two-dimensional, transforming the Fermi surface topology. Such an ultrathin film further changes its topology through one-dimensional (1D) structural deformation of the film when it is grown on a 1D substrate. In particular, when the interface has 1D metallic bands, the system is additionally stabilized by forming an electron energy gap by hybridization between 1D states of the film and substrate
    • …
    corecore