170 research outputs found

    Expression of protease-activated receptors in arthritic synovial tissues

    Get PDF
    Clinical and experimental evidence suggests that synovial thrombin formation in arthritic joints is prominent and deleterious, leading to exacerbation of rheumatoid arthritis (RA). In this context, cellular effects of thrombin mediated by the protease-activated receptors (PARs) in arthritic joints may be of paramount significance. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin whereas PAR2 is activated by trypsin and few other proteases.We first explored PARs expression in RA synovial tissues. Synovial membranes from 11 RA patients were analyzed for PARs expression by RT-PCR and by immunohistology. PAR4 was found in all the biopsies, whereas the expression of PAR1, PAR 2 and PAR3 was more restricted (8/11, 5/11 and 3/11 respectively). In the arthritic synovial membrane of murine antigen-induced arthritis (AIA) we found coexpression of the four different PARs. Next, we explored the functional importance of PAR1 during AIA in vivo using PAR-1 deficient mice. The phenotype of PAR1-deficient mice (n = 22), based on the analysis of arthritis severity (as measured by 99 m tecnetium uptake, histological scoring and intra-articular fibrin measurements) was similar to that of wild-type mice (n = 24). In addition, the in vivo production of antibodies against mBSA was also similar. By contrast, the mBSA-induced in vitro lymph node cell proliferation was significantly decreased in PAR1-deficient mice as compared with controls. Accordingly, mBSA-induced production of interferon-Îł by lymph node cells in culture was significantly decreased in PAR1-deficient mice as compared with controls, whereas opposite results were observed for production of IL-10

    Invasion success of a Lessepsian symbiont-bearing foraminifera linked to high dispersal ability, preadaptation and suppression of sexual reproduction

    Get PDF
    Among the most successful Lessepsian invaders is the symbiont-bearing benthic foraminifera Amphistegina lobifera. In its newly conquered habitat, this prolific calcifier and ecosystem engineer is exposed to environmental conditions that exceed the range of its native habitat. To disentangle which processes facilitated the invasion success of A. lobifera into the Mediterranean Sea we analyzed a ~ 1400 bp sequence fragment covering the SSU and ITS gene markers to compare the populations from its native regions and along the invasion gradient. The genetic variability was studied at four levels: intra-genomic, population, regional and geographical. We observed that the invasion is not associated with genetic differentiation, but the invasive populations show a distinct suppression of intra-genomic variability among the multiple copies of the rRNA gene. A reduced genetic diversity compared to the Indopacific is observed already in the Red Sea populations and their high dispersal potential into the Mediterranean appears consistent with a bridgehead effect resulting from the postglacial expansion from the Indian Ocean into the Red Sea. We conclude that the genetic structure of the invasive populations reflects two processes: high dispersal ability of the Red Sea source population pre-adapted to Mediterranean conditions and a likely suppression of sexual reproduction in the invader. This discovery provides a new perspective on the cost of invasion in marine protists: The success of the invasive A. lobifera in the Mediterranean Sea comes at the cost of abandonment of sexual reproduction

    Patterns of eukaryotic diversity from the surface to the deep-ocean sediment

    Get PDF
    Remote deep-ocean sediment (DOS) ecosystems are among the least explored biomes on Earth. Genomic assessments of their biodiversity have failed to separate indigenous benthic organisms from sinking plankton. Here, we compare global-scale eukaryotic DNA metabarcoding datasets (18S-V9) from abyssal and lower bathyal surficial sediments and euphotic and aphotic ocean pelagic layers to distinguish plankton from benthic diversity in sediment material. Based on 1685 samples collected throughout the world ocean, we show that DOS diversity is at least threefold that in pelagic realms, with nearly two-thirds represented by abundant yet unknown eukaryotes. These benthic communities are spatially structured by ocean basins and particulate organic carbon (POC) flux from the upper ocean. Plankton DNA reaching the DOS originates from abundant species, with maximal deposition at high latitudes. Its seafloor DNA signature predicts variations in POC export from the surface and reveals previously overlooked taxa that may drive the biological carbon pump

    Attribute Controlled Reconstruction and Adaptive Mathematical Morphology

    No full text
    ISBN : 978-3-642-38293-2International audienceIn this paper we present a reconstruction method controlled by the evolution of attributes. The process begins from a marker, propagated over increasing quasi-flat zones. The evolution of several increasing and non-increasing attributes is studied in order to select the appropriate region. Additionally, the combination of attributes can be used in a straightforward way. To demonstrate the performance of our method, three applications are presented. Firstly, our method successfully segments connected objects in range images. Secondly, input-adaptive structuring elements (SE) are defined computing the controlled propagation for each pixel on a pilot image. Finally, input-adaptive SE are used to assess shape features on the image. Our approach is multi-scale and auto-dual. Compared with other methods, it is based on a given attribute but does not require a size parameter in order to determine appropriate regions. It is useful to extract objects of a given shape. Additionally, our reconstruction is a connected operator since quasi-flat zones do not create new contours on the image

    Toward a mineral physics reference model for the Moon's core

    Get PDF
    International audienceIron is the main constituent of terrestrial planetary cores, taking on a hexagonal closed packed structure under the conditions of Earth’s inner core, and a face-centered cubic (fcc) structure at the more moderate pressures of smaller bodies, such as the Moon, Mercury, or Mars. Here we present sound velocity and density measurements of fcc iron at pressures and temperatures characteristic of small planetary interiors. The results indicate that the seismic velocities currently proposed for the Moon’s inner core are well below those of fcc iron or plausible iron alloys. Our dataset provides strong constraints to seismic models of the lunar core and cores of small telluric planets, and allows us to build a direct compositional and velocity model of the Moon’s core

    Acute partial Budd-Chiari syndrome and portal vein thrombosis in cytomegalovirus primary infection: a case report

    Get PDF
    BACKGROUND: Splanchnic vein thrombosis may complicate inherited thrombotic disorders. Acute cytomegalovirus infection is a rare cause of acquired venous thrombosis in the portal or mesenteric territory, but has never been described extending into a main hepatic vein. CASE PRESENTATION: A 36-year-old immunocompetent woman presented with acute primary cytomegalovirus infection in association with extensive thrombosis in the portal and splenic vein. In addition, a fresh thrombus was evident in the right hepatic vein. A thorough evaluation for a hypercoagulable state was negative. The clinical course, biological evolution, radiological and histological findings were consistent with cytomegalovirus hepatitis complicated by a partial acute Budd-Chiari syndrome and portal thrombosis. Therapeutic anticoagulation was associated with a slow clinical improvement and partial vascular recanalization. CONCLUSION: We described in details a new association between cytomegalovirus infection and acute venous thrombosis both in the portal vein and in the right hepatic vein, realizing a partial Budd-Chiari syndrome. One should be aware that this rare thrombotic event may be complicated by partial venous outflow block

    Etiology, management, and outcome of the Budd-Chiari syndrome

    Get PDF
    Background: The Budd-Chiari syndrome (BCS) is hepatic venous outflow obstruction. What is known about the syndrome is based on small studies of prevalent cases. Objective: To characterize the causes and treatment of incident BCS. Design: Consecutive case series of patients with incident BCS, enrolled from October 2003 to October 2005 and followed until May 2006. Setting: Academic and nonacademic hospitals in France, Spain, Italy, Great Britain, Germany, Belgium, the Netherlands, Portugal, and Switzerland. Patients: Persons older than 16 years with definite hepatic outflow obstruction diagnosed by imaging. Persons with hepatic outflow obstruction due to heart failure, sinusoidal obstruction syndrome, cancer, or liver transplantation were excluded. Measurements: Signs and symptoms; laboratory and imaging findings; diagnosis; treatment; and overall, transplantation-free, and intervention-free survival. Results: 163 incident cases of BCS were identified. Median follow-up was 17 months (range, 0.1 to 31 months). Most patients (84%) had at least 1 thrombotic risk factor, and many (46%) had more than 1; the most common was myeloproliferative disorders (49% of 103 tested patients). Patients were mainly treated with anticoagulation (140 patients [86%]), transjugular intrahepatic portosystemic shunting (56 patients [34%]), or liver transplantation (20 patients [12%]), and 80 patients (49%) were managed noninvasively. Only 3 patients underwent surgical shunting. The survival rate was 87% (95% CI, 82% to 93%) at 1 year and 82% (CI, 75% to 88%) at 2 years. Limitation: Treatment was not standardized across all centers, and data on important clinical variables were missing for some patients. Conclusion: Most patients with BCS have at least 1 thrombotic risk factor, and many have more than 1; myeloproliferative disorders are most common. One- and 2-year survival rates are good with contemporary management, which includes noninvasive therapies (anticoagulation and diuretics) and invasive techniques. Transjugular intrahepatic portosystemic shunting seems to have replaced surgical shunting as the most common invasive therapeutic procedure. Primary Funding Source: Fifth Framework Programme of the European Commission

    Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

    Get PDF
    The study was supported by Swiss National Science Foundation grants 31003A-140766 and 313003A-159709 and by the DFG Research Centre/Cluster of Excellence “The Ocean in the Earth System”.Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA) in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (< 10 %) of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of the entire pelagic community, including non-fossilized taxa, thus opening new avenues for paleoceanographic and paleoecological studies.Publisher PDFPeer reviewe
    • 

    corecore