2,140 research outputs found

    Wigner distributions for finite dimensional quantum systems: An algebraic approach

    Get PDF
    We discuss questions pertaining to the definition of `momentum', `momentum space', `phase space', and `Wigner distributions'; for finite dimensional quantum systems. For such systems, where traditional concepts of `momenta' established for continuum situations offer little help, we propose a physically reasonable and mathematically tangible definition and use it for the purpose of setting up Wigner distributions in a purely algebraic manner. It is found that the point of view adopted here is limited to odd dimensional systems only. The mathematical reasons which force this situation are examined in detail.Comment: Latex, 13 page

    Phase-space descriptions of operators and the Wigner distribution in quantum mechanics II. The finite dimensional case

    Get PDF
    A complete solution to the problem of setting up Wigner distribution for N-level quantum systems is presented. The scheme makes use of some of the ideas introduced by Dirac in the course of defining functions of noncommuting observables and works uniformly for all N. Further, the construction developed here has the virtue of being essentially input-free in that it merely requires finding a square root of a certain N^2 x N^2 complex symmetric matrix, a task which, as is shown, can always be accomplished analytically. As an illustration, the case of a single qubit is considered in some detail and it is shown that one recovers the result of Feynman and Wootters for this case without recourse to any auxiliary constructs.Comment: 14 pages, typos corrected, para and references added in introduction, submitted to Jour. Phys.

    Biotic and abiotic factors associated with soil supressiveness to Rhizoctonia solani.

    Get PDF
    Crop management may modify soil characteristics, and as a consequence, alter incidence of diseases caused by soilborne pathogens. This study evaluated the suppressiveness to R. solani in 59 soil samples from a microbasin. Soil sampling areas included undisturbed forest, pasture and fallow ground areas, annual crops, perennial crops, and ploughed soil. The soil samples were characterized according to abiotic variables (pH; electrical conductivity; organic matter content; N total; P; K; Ca; Mg; Al; H; S; Na; Fe; Mn; Cu; Zn; B; cation exchange capacity; sum of bases and base saturation) and biotic variables (total microbial activity evaluated by the CO2 evolution and fluorescein diacetate hydrolysis; culturable bacterial, fungal, actinomycetes, protozoa, fluorescent Pseudomonas and Fusarium spp. communities). The contribution and relationships of these variables to suppression to R. solani were assessed by path analysis. When all samples were analyzed together, only abiotic variables correlated with suppression of R. solani, but the entire set of variables explained only 51% of the total variation. However, when samples were grouped and analyzed by vegetation cover, the set of evaluated variables in all cases accounted for more than 90% of the variation in suppression of the pathogen. In highly suppressive soils of forest and pasture/ fallow ground areas, several abiotic variables and fluorescein diacetate hydrolysis correlated with suppression of R. solani and the set of variables explained more than 98% of suppressiveness

    Ultrafast Magnetization Dynamics in Diluted Magnetic Semiconductors

    Get PDF
    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes which restore the initial ferromagnetic order in a nanosecond time scale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within a time scale of few hundreds of picoseconds.Comment: Submitted to PR

    3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks

    Full text link
    In recent years, numerical models have become popular and powerful tools to investigate the electromagnetic behavior of superconductors. One domain where this advances are most necessary is the 3D modeling of the electromagnetic behavior of superconductors. For this purpose, a benchmark problem consisting of superconducting cube subjected to an AC magnetic field perpendicular to one of its faces has been recently defined and successfully solved. In this work, a situation more relevant for applications is investigated: a superconducting parallelepiped bulk with the magnetic field parallel to two of its faces and making an angle with the other one without and with a further constraint on the possible directions of the current. The latter constraint can be used to model the magnetization of a stack of high-temperature superconductor tapes, which are electrically insulated in one direction. For the present study three different numerical approaches are used: the Minimum Electro-Magnetic Entropy Production (MEMEP) method, the HH-formulation of Maxwell's equations and the Volume Integral Method (VIM) for 3D eddy currents computation. The results in terms of current density profiles and energy dissipation are compared, and the differences in the two situations of unconstrained and constrained current flow are pointed out. In addition, various technical issues related to the 3D modeling of superconductors are discussed and information about the computational effort required by each model is provided. This works constitutes a concrete result of the collaborative effort taking place within the HTS numerical modeling community and will hopefully serve as a stepping stone for future joint investigations

    Topological Protection and Quantum Noiseless Subsystems

    Full text link
    Encoding and manipulation of quantum information by means of topological degrees of freedom provides a promising way to achieve natural fault-tolerance that is built-in at the physical level. We show that this topological approach to quantum information processing is a particular instance of the notion of computation in a noiseless quantum subsystem. The latter then provide the most general conceptual framework for stabilizing quantum information and for preserving quantum coherence in topological and geometric systems.Comment: 4 Pages LaTeX. Published versio

    On the transition from complex to real scalar fields in modern cosmology

    Full text link
    We study some problems arising from the introduction of a complex scalar field in cosmology, modelling its possible behaviors in both the inflationary and dark energy stages of the universe. Such examples contribute to show that, while the complex nature of the scalar field can be indeed important during inflation, it loses its meaning in the later dark-energy dominated era of cosmology, when the phase of the complex field is practically constant, and there is indeed a transition from complex to real scalar field. In our considerations, the Noether symmetry approach turns out to be a useful tool once again. We arrive eventually at a potential containing the sixth and fourth powers of the scalar field, and the resulting semiclassical quantum cosmology is studied to gain a better understanding of the inflationary stage.Comment: 21 pages, 6 figures. In the new version, sections I, IV and VI have been improved, and two words have been added at the beginning of the titl
    corecore