2,140 research outputs found
Recommended from our members
The role of negative maternal affective states and infant temperament in early interactions between infants with cleft lip and their mothers
OBJECTIVES: The study examined the early interaction between mothers and their infants with cleft lip, assessing the role of maternal affective state and expressiveness and differences in infant temperament.
METHODS: Mother-infant interactions were assessed in 25 2-month-old infants with cleft lip and 25 age-matched healthy infants. Self-report and behavioral observations were used to assess maternal depressive symptoms and expressions. Mothers rated infant temperament.
RESULTS: Infants with cleft lip were less engaged and their mothers showed more difficulty in interaction than control group dyads. Mothers of infants with cleft lip displayed more negative affectivity, but did not report more self-rated depressive symptoms than control group mothers. No group differences were found in infant temperament.
CONCLUSIONS: In order to support the mother's experience and facilitate her ongoing parental role, findings highlight the importance of identifying maternal negative affectivity during early interactions, even when they seem have little awareness of their depressive symptoms
Wigner distributions for finite dimensional quantum systems: An algebraic approach
We discuss questions pertaining to the definition of `momentum', `momentum
space', `phase space', and `Wigner distributions'; for finite dimensional
quantum systems. For such systems, where traditional concepts of `momenta'
established for continuum situations offer little help, we propose a physically
reasonable and mathematically tangible definition and use it for the purpose of
setting up Wigner distributions in a purely algebraic manner. It is found that
the point of view adopted here is limited to odd dimensional systems only. The
mathematical reasons which force this situation are examined in detail.Comment: Latex, 13 page
Phase-space descriptions of operators and the Wigner distribution in quantum mechanics II. The finite dimensional case
A complete solution to the problem of setting up Wigner distribution for
N-level quantum systems is presented. The scheme makes use of some of the ideas
introduced by Dirac in the course of defining functions of noncommuting
observables and works uniformly for all N. Further, the construction developed
here has the virtue of being essentially input-free in that it merely requires
finding a square root of a certain N^2 x N^2 complex symmetric matrix, a task
which, as is shown, can always be accomplished analytically. As an
illustration, the case of a single qubit is considered in some detail and it is
shown that one recovers the result of Feynman and Wootters for this case
without recourse to any auxiliary constructs.Comment: 14 pages, typos corrected, para and references added in introduction,
submitted to Jour. Phys.
Biotic and abiotic factors associated with soil supressiveness to Rhizoctonia solani.
Crop management may modify soil characteristics, and as a consequence, alter incidence of diseases caused by soilborne pathogens. This study evaluated the suppressiveness to R. solani in 59 soil samples from a microbasin. Soil sampling areas included undisturbed forest, pasture and fallow ground areas, annual crops, perennial crops, and ploughed soil. The soil samples were characterized according to abiotic variables (pH; electrical conductivity; organic matter content; N total; P; K; Ca; Mg; Al; H; S; Na; Fe; Mn; Cu; Zn; B; cation exchange capacity; sum of bases and base saturation) and biotic variables (total microbial activity evaluated by the CO2 evolution and fluorescein diacetate hydrolysis; culturable bacterial, fungal, actinomycetes, protozoa, fluorescent Pseudomonas and Fusarium spp. communities). The contribution and relationships of these variables to suppression to R. solani were assessed by path analysis. When all samples were analyzed together, only abiotic variables correlated with suppression of R. solani, but the entire set of variables explained only 51% of the total variation. However, when samples were grouped and analyzed by vegetation cover, the set of evaluated variables in all cases accounted for more than 90% of the variation in suppression of the pathogen. In highly suppressive soils of forest and pasture/ fallow ground areas, several abiotic variables and fluorescein diacetate hydrolysis correlated with suppression of R. solani and the set of variables explained more than 98% of suppressiveness
Ultrafast Magnetization Dynamics in Diluted Magnetic Semiconductors
We present a dynamical model that successfully explains the observed time
evolution of the magnetization in diluted magnetic semiconductor quantum wells
after weak laser excitation. Based on the pseudo-fermion formalism and a second
order many-particle expansion of the exact p-d exchange interaction, our
approach goes beyond the usual mean-field approximation. It includes both the
sub-picosecond demagnetization dynamics and the slower relaxation processes
which restore the initial ferromagnetic order in a nanosecond time scale. In
agreement with experimental results, our numerical simulations show that,
depending on the value of the initial lattice temperature, a subsequent
enhancement of the total magnetization may be observed within a time scale of
few hundreds of picoseconds.Comment: Submitted to PR
3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks
In recent years, numerical models have become popular and powerful tools to
investigate the electromagnetic behavior of superconductors. One domain where
this advances are most necessary is the 3D modeling of the electromagnetic
behavior of superconductors. For this purpose, a benchmark problem consisting
of superconducting cube subjected to an AC magnetic field perpendicular to one
of its faces has been recently defined and successfully solved. In this work, a
situation more relevant for applications is investigated: a superconducting
parallelepiped bulk with the magnetic field parallel to two of its faces and
making an angle with the other one without and with a further constraint on the
possible directions of the current. The latter constraint can be used to model
the magnetization of a stack of high-temperature superconductor tapes, which
are electrically insulated in one direction. For the present study three
different numerical approaches are used: the Minimum Electro-Magnetic Entropy
Production (MEMEP) method, the -formulation of Maxwell's equations and the
Volume Integral Method (VIM) for 3D eddy currents computation. The results in
terms of current density profiles and energy dissipation are compared, and the
differences in the two situations of unconstrained and constrained current flow
are pointed out. In addition, various technical issues related to the 3D
modeling of superconductors are discussed and information about the
computational effort required by each model is provided. This works constitutes
a concrete result of the collaborative effort taking place within the HTS
numerical modeling community and will hopefully serve as a stepping stone for
future joint investigations
Topological Protection and Quantum Noiseless Subsystems
Encoding and manipulation of quantum information by means of topological
degrees of freedom provides a promising way to achieve natural fault-tolerance
that is built-in at the physical level. We show that this topological approach
to quantum information processing is a particular instance of the notion of
computation in a noiseless quantum subsystem. The latter then provide the most
general conceptual framework for stabilizing quantum information and for
preserving quantum coherence in topological and geometric systems.Comment: 4 Pages LaTeX. Published versio
On the transition from complex to real scalar fields in modern cosmology
We study some problems arising from the introduction of a complex scalar
field in cosmology, modelling its possible behaviors in both the inflationary
and dark energy stages of the universe. Such examples contribute to show that,
while the complex nature of the scalar field can be indeed important during
inflation, it loses its meaning in the later dark-energy dominated era of
cosmology, when the phase of the complex field is practically constant, and
there is indeed a transition from complex to real scalar field. In our
considerations, the Noether symmetry approach turns out to be a useful tool
once again. We arrive eventually at a potential containing the sixth and fourth
powers of the scalar field, and the resulting semiclassical quantum cosmology
is studied to gain a better understanding of the inflationary stage.Comment: 21 pages, 6 figures. In the new version, sections I, IV and VI have
been improved, and two words have been added at the beginning of the titl
- …