24,274 research outputs found
A 43GHz VLBI mapping of SiO maser emission associated with Orion-KL IRC-2
A milliarcsecond resolution spot map of the SiO maser emission associated with IRC-2 in Orion-KL is presented. The two dominant groups of spectral features, near V(LRS) = -6 and 16 km/s, were observed in the 43 GHz, v = 1 to 0 transition of SiO, using a Mark III VLBI system. The 74 km baseline ran from Haystack Observatory in Westford, Massachusetts to Five College Radio Astronomy Observatory (FCRAO) in New Salem, Massachusetts. Five distinct maser features were observed: -8.5 to -6.5 km/s; -5 to -1.5 km/s; 12 to 13.5 km/s; 16.5 to 19 km/s; and 20 to 21 km/s (stellar velocity = 5 km/s). The relative positions were established, from an analysis of fringe phases, to an accuracy of about 5 milliarcseconds. All the features lay within an area of radius 0.08 arcseconds or 6x10(14) cm, at a distance of 500 pc. Previous interferometric studies were only able to measure the gross separation between the red and the blue shifted groups. Our measurement of the separation between these two gropus is consistent with those of the previous studies, indicating the persistence of these two centers of activity. The absolute positions of the masers with respect to IRC-2 are only known to an accuracy of about 1 arcsecond. It is assumed that IRC-2 is centered between the red shifted and the blue shifted maser features. The relative placement of these two groups of maser features agrees with observations of thermal emission from SO, which traces the outflow on a much larger scale. The SiO masers trace the neutral outflow from IRC-2 on the smallest scale yet observed
The estimation of the propagation delay through the troposphere from microwave radiometer data
The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm
Outflow 20--2000 AU from a High-Mass Protostar in W51-IRS2
We present the results of the first high angular resolution observations of
SiO maser emission towards the star forming region W51-IRS2 made with the Very
Large Array (VLA) and Very Long Baseline Array (VLBA). Our images of the water
maser emission in W51-IRS2 reveal two maser complexes bracketing the SiO maser
source. One of these water maser complexes appears to trace a bow shock whose
opening angle is consistent with the opening angle observed in the distribution
of SiO maser emission. A comparison of our water maser image with an image
constructed from data acquired 19 years earlier clearly shows the persistence
and motion of this bow shock. The proper motions correspond to an outflow
velocity of 80 km/s, which is consistent with the data of 19 years ago (that
spanned 2 years). We have discovered a two-armed linear structure in the SiO
maser emission on scales of ~25 AU, and we find a velocity gradient on the
order of 0.1 km/s/AU along the arms. We propose that the SiO maser source
traces the limbs of an accelerating bipolar outflow close to an obscured
protostar. We estimate that the outflow makes an angle of <20 degrees with
respect to the plane of the sky. Our measurement of the acceleration is
consistent with a reported drift in the line-of-sight velocity of the W51 SiO
maser source.Comment: 19 pages, 5 figures (including 3 color). Accepted for publication in
ApJ (April 1, 2001 issue
Diagnosis and management of pneumonia in the emergency department.
Pneumonia is a condition that is often treated by emergency physicians. This article reviews the diagnosis and management of pneumonia in the emergency department and highlights dilemmas in diagnostic testing, use of blood and sputum cultures, hospital admission decisions, infection control, quality measures for pneumonia care, and empiric antimicrobial therapy
The asymmetric profile of the H76 alpha line emission from MWC349
MWC349 is an emission-line star found by Merrill, Humason and Burwell (1932). Braes, Habing and Schoenmaker (1972) discovered that it is a strong radio source. The radio emission originates in a massive ionized wind that is expanding with a velocity of about 50 km s(-1). Its continuum spectrum fits well a nu(0.6) power law from the cm wavelengths to the far-IR. Radio recombination line emission from the envelope of MWC349 was first detected by Altenhoff, Strittmatter and Wendker (1981). We have obtained good signal-to-noise ratio, Very Large Array observations of the H76 alpha radio recombination line from the ionized wind of MWC349. Our data reveal that the profile is markedly asymmetric, with a steep rise on the blue side. This asymmetry could be due to non-LTE effects in the formation and transfer of the line or to intrinsic asymmetries in the envelope. Our analysis suggests that most probably the peculiar profile is caused by a non-LTE enhancement of the line emission from the side of the envelope nearer to the observer. This asymmetry has the opposite sense than that observed in optical and IR recombination lines, where a different effect (absorption of the stellar continuum by the gas in the wind between the star and the observer) is known to be dominant, leading to the classic P Cygni profile. We propose that the profiles of the radio recombination lines from ionized stellar winds will have this characteristic shape, while optical and IR recombination lines are characterized by P Cygni-like profiles. Unfortunately, at present the detection of radio recombination lines from ionized stellar winds is only feasible for MWC349 and a few other objects
- …