137 research outputs found

    Choroidal abnormalities in Neurofibromatosis type 1

    Get PDF
    A 28-year-old man (Patient 1) and a 31-year-old woman (Patient 2), were referred to the eye clinic after dermatological finding of six and eight café-au-lait macules over 15 mm in maximum diameter, respectively

    Ocular manifestations in Gorlin-Goltz syndrome

    Get PDF
    Background: Gorlin-Goltz syndrome, also known as nevoid basal cell carcinoma syndrome, is a rare genetic disorder that is transmitted in an autosomal dominant manner with complete penetrance and variable expressivity. It is caused in 85% of the cases with a known etiology by pathogenic variants in the PTCH1 gene, and is characterized by a wide range of developmental abnormalities and a predisposition to multiple neoplasms. The manifestations are multiple and systemic and consist of basal cell carcinomas in various regions, odontogenic keratocistic tumors and skeletal anomalies, to name the most frequent. Despite the scarce medical literature on the topic, ocular involvement in this syndrome is frequent and at the level of various ocular structures. Our study focuses on the visual apparatus and its annexes in subjects with this syndrome, in order to better understand how this syndrome affects the ocular system, and to evaluate with greater accuracy and precision the nature of these manifestations in this group of patients. Results: Our study confirms the presence of the commonly cited ocular findings in the general literature regarding the syndrome [hypertelorism (45.5%), congenital cataract (18%), nystagmus (9%), colobomas (9%)] and highlights strabismus (63% of the patients), epiretinal membranes (36%) and myelinated optic nerve fiber layers (36%) as the most frequent ophthalmological findings in this group of patients. Conclusions: The presence of characteristic and frequent ocular signs in the Gorlin- Goltz syndrome could help with the diagnostic process in subjects suspected of having the syndrome who do not yet have a diagnosis. The ophthalmologist has a role as part of a multidisciplinary team in managing these patients. The ophthalmological follow-up that these patients require, can allow, if necessary, a timely therapy that could improve the visual prognosis of such patients

    Molecular insights and emerging strategies for treatment of metastatic uveal melanoma

    Get PDF
    Uveal melanoma (UM) is the most common intraocular cancer. In recent decades, major advances have been achieved in the diagnosis and prognosis of UM allowing for tailored treatments. However, nearly 50% of patients still develop metastatic disease with survival rates of less than 1 year. There is currently no standard of adjuvant and metastatic treatment in UM, and available therapies are ineffective resulting from cutaneous melanoma protocols. Advances and novel treatment options including liver-directed therapies, immunotherapy, and targeted-therapy have been investigated in UM-dedicated clinical trials on single compounds or combinational therapies, with promising results. Therapies aimed at prolonging or targeting metastatic tumor dormancy provided encouraging results in other cancers, and need to be explored in UM. In this review, the latest progress in the diagnosis, prognosis, and treatment of UM in adjuvant and metastatic settings are discussed. In addition, novel insights into tumor genetics, biology and immunology, and the mechanisms underlying metastatic dormancy are discussed. As evident from the numerous studies discussed in this review, the increasing knowledge of this disease and the promising results from testing of novel individualized therapies could offer future perspectives for translating in clinical use

    Application of a model-based rainfall-runoff database as efficient tool for flood risk management

    Get PDF
    A framework for a comprehensive synthetic rainfall-runoff database was developed to study catchment response to a variety of rainfall events. The framework supports effective flood risk assessment and management and implements simple approaches. It consists of three flexible components, a rainfall generator, a continuous rainfallrunoff model, and a database management system. The system was developed and tested at two gauged river sections along the upper Tiber River (central Italy). One of the main questions was to investigate how simple such approaches can be applied without impairing the quality of the results. The rainfall-runoff model was used to simulate runoff on the basis of a large number of rainfall events. The resulting rainfallrunoff database stores pre-simulated events classified on the basis of the rainfall amount, initial wetness conditions and initial discharge. The real-time operational forecasts follow an analogue method that does not need new model simulations. However, the forecasts are based on the simulation results available in the rainfall-runoff database (for the specific class to which the forecast belongs). Therefore, the database can be used as an effective tool to assess possible streamflow scenarios assuming different rainfall volumes for the following days. The application to the study site shows that magnitudes of real flood events were appropriately captured by the database. Further work should be dedicated to introduce a component for taking account of the actual temporal distribution of rainfall events into the stochastic rainfall generator and to the use of different rainfall-runoff models to enhance the usability of the proposed procedure

    Preparation and Carbonization of Glucose and Pyromellitic Dianhydride Crosslinked Polymers

    Get PDF
    In this work, four types of nanosponges were prepared from pyromellitic dianhydride (PMDA) and D-glucose (GLU) with different molar ratios (1.5:1, 2:1, 2.5:1 and 3:1). The obtained PMDA/GLU nanosponges were then pyrolyzed at 800 °C for 30 min under N2 gas flow. The prepared polymeric nanosponges were investigated by FTIR spectroscopy, elemental and thermogravimetric analyses to unravel the role played by the different molar ratio of the precursors in the formation of the polymer. The pyrolyzed nanosponges were investigated by means of porosity measurements, X-ray diffraction analysis, Raman spectroscopy and high-resolution transmission electron microscopy. Notably, no significant correlation of the amounts of used precursors with the porous texture and structure was evidenced. The results corroborate that PMDA and GLU can be easily combined to prepare nanosponges and that the carbon materials produced by their pyrolysis can be associated with glassy carbons with a microporous texture and relatively high surface area. Such hard carbons can be easily obtained and shrewdly used to segregate relatively small molecules and organic contaminants; in this study methylene blue adsorption was investigated

    A physically based approach for the estimation of root-zone soil moisture from surface measurements

    Get PDF
    Abstract. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. It was derived from a simplified soil water balance equation for semiarid environments that provides a closed form of the relationship between the root zone and the surface soil moisture with a limited number of physically consistent parameters. The method sheds lights on the mentioned relationship with possible applications in the use of satellite remote sensing retrievals of soil moisture. The proposed approach was used on soil moisture measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) and the Soil Climate Analysis Network (SCAN) databases. The AMMA network was designed with the aim to monitor three so-called mesoscale sites (super sites) located in Benin, Mali, and Niger using point measurements at different locations. Thereafter the new formulation was tested on three additional stations of SCAN in the state of New Mexico (US). Both databases are ideal for the application of such method, because they provide a good description of the soil moisture dynamics at the surface and the root zone using probes installed at different depths. The model was first applied with parameters assigned based on the physical characteristics of several sites. These results highlighted the potential of the methodology, providing a good description of the root-zone soil moisture. In the second part of the paper, the model performances were compared with those of the well-known exponential filter. Results show that this new approach provides good performances after calibration with a set of parameters consistent with the physical characteristics of the investigated areas. The limited number of parameters and their physical interpretation makes the procedure appealing for further applications to other regions

    Hyperpigmented spots at fundus examination: a new ocular sign in neurofibromatosis type I

    Get PDF
    Background: Neurofibromatosis Type I (NF1), also termed von Recklinghausen disease, is a rare genetic disorder that is transmitted by autosomal dominant inheritance, with complete penetrance and variable expressivity. It is caused by mutation in the NF1 gene on chromosome 17 encoding for neurofibromin, a protein with oncosuppressive activity, and it is 50% sporadic or inherited. The disease is characterized by a broad spectrum of clinical manifestations, mainly involving the nervous system, the eye and skin, and a predisposition to develop multiple benign and malignant neoplasms. Ocular diagnostic hallmarks of NF1 include optic gliomas, iris Lisch nodules, orbital and eyelid neurofibromas, eyelid café-au-lait spots. Choroidal nodules and microvascular abnormalities have recently been identified as additional NF1-related ocular manifestations. The present study was designed to describe the features and clinical significance of a new sign related to the visual apparatus in NF-1, represented by hyperpigmented spots (HSs) of the fundus oculi. Results: HSs were detected in 60 (24.1%) out of 249 patients with NF1, with a positive predictive value of 100% and a negative predictive value of 44.2%. None of the healthy subjects (150 subjects) showed the presence of HSs. HSs were visible under indirect ophthalmoscopy, ultra-wide field (UWF) pseudocolor imaging and red-only laser image, near-infrared reflectance (NIR)-OCT, but they were not appreciable on UWF green reflectance. The location and features of pigmentary lesions matched with the already studied NF1-related choroidal nodules. No significant difference was found between the group of patients (n = 60) with ocular HSs and the group of patients (n = 189) without ocular pigmented spots in terms of age, gender or severity grading of the disease. A statistically significant association was demonstrated between the presence of HSs and neurofibromas (p = 0.047), and between the presence of HSs and NF1-related retinal microvascular abnormalities (p = 0.017). Conclusions: We described a new ocular sign represented by HSs of the fundus in NF1. The presence of HSs was not a negative prognostic factor of the disease. Following multimodal imaging, we demonstrated that HSs and choroidal nodules were consistent with the same type of lesion, and simple indirect ophthalmoscopy allowed for screening of HSs in NF1

    Toward the estimation of river discharge variations using MODIS data in ungauged basins

    Get PDF
    This study investigates the capability of the Moderate resolution Imaging Spectroradiometer (MODIS) to estimate river discharge, even for ungauged sites. Because of its frequent revisits (as little as every 3 h) and adequate spatial resolution (250 m), MODIS bands 1 and 2 have significant potential for mapping the extent of flooded areas and estimating river discharge even for medium-sized basins. Specifically, the different behaviour of water and land in the Near Infrared (NIR) portion of the electromagnetic spectrum is exploited by computing the ratio (C/M) of the MODIS channel 2 reflectance values between two pixels located within (M) and outside (C), but close to, the river. The values of C/M increase with the presence of water and, hence, with discharge. Moreover, in order to reduce the noise effects due to atmospheric contribution, an exponential smoothing filter is applied, thus obtaining C/M⁎. Time series of hourly mean flow velocity and discharge between 2005 and 2011 measured at four gauging stations located along the Po river (Northern Italy) are employed for testing the capability of C/M⁎ to estimate discharge/flow velocity. Specifically, the meanders and urban areas are considered the best locations for the position of the pixels M and C, respectively. Considering the optimal pixels, the agreement between C/M⁎ and discharge/flow velocity is fairly good with values in the range of 0.65–0.77. Additionally, the application to ungauged sites is tested by deriving a unique regional relationship between C/M⁎ and flow velocity valid for the whole Po river and providing only a slight deterioration of the performance. Finally, the sensitivity of the results to the selection of the C and M pixels is investigated by randomly changing their location. Also in this case, the agreement with in situ observations of velocity is fairly satisfactory (r ~ 0.6). The obtained results demonstrate the capability of MODIS to monitor discharge (and flow velocity). Therefore, its application for a larger number of sites worldwide will be the object of future studies
    • 

    corecore