103 research outputs found

    Band gap bowing in NixMg1-xO.

    Get PDF
    Epitaxial transparent oxide NixMg1-xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1-xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x  0.074 and account for the anomalously large band gap narrowing in the NixMg1-xO solid solution system

    Structure and lattice dynamics of the wide band gap semiconductors MgSiN2_{2} and MgGeN2_{2}

    Get PDF
    We have determined the structural and lattice dynamical properties of the orthorhombic, wide band gap semiconductors MgSiN2_{2} and MgGeN2_{2} using density functional theory. In addition, we present structural properties and Raman spectra of a MgSiN2_{2} powder. The structural properties and lattice dynamics of the orthorhombic systems are compared to wurtzite AlN. We find clear differences in the lattice dynamics between MgSiN2_{2}, MgGeN2_{2} and AlN, for example we find that the highest phonon frequency in MgSiN2_{2} is about 100~cm−1^{-1} higher than the highest frequency in AlN and that MgGeN2_{2} is much softer. We also provide the Born effective charge tensors and dielectric tensors of MgSiN2_{2}, MgGeN2_{2} and AlN. Phonon related thermodynamic properties, such as the heat capacity and entropy, are in very good agreement with available experimental results.Comment: 9 pages, 11 figures, 6 table

    Macro- and micro-strain in GaN nanowires on Si(111)

    Full text link
    We analyze the strain state of GaN nanowire ensembles by x-ray diffraction. The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a self-organized manner. On a macroscopic scale, the nanowires are found to be free of strain. However, coalescence of the nanowires results in micro-strain with a magnitude from +-0.015% to +-0.03%.This micro-strain contributes to the linewidth observed in low-temperature photoluminescence spectra

    Coincident electron channeling and cathodoluminescence studies of threading dislocations in GaN

    Get PDF
    We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black–white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated

    New electrochemically improved tetrahedral amorphous carbon films for biological applications

    Get PDF
    Carbon based materials have been frequently used to detect different biomolecules. For example high sp3 containing hydrogen free diamond-like carbon (DLC) possesses many properties that are beneficial for biosensor applications. Unfortunately, the sensitivities of the DLC electrodes are typically low. Here we demonstrate that by introducing topography on the DLC surface and by varying its layer thickness, it is possible to significantly increase the sensitivity of DLC thin film electrodes towards dopamine. The electrode structures are characterized in detail by atomic force microscopy (AFM) and conductive atomic force microscopy (C-AFM) as well as by transmission electron microscopy (TEM) combined with electron energy loss spectroscopy (EELS). With cyclic voltammetry (CV) measurements we demonstrate that the new improved DLC electrode has a very wide water window, but at the same time it also exhibits fast electron transfer rate at the electrode/solution interface. In addition, it is shown that the sensitivity towards dopamine is increased up to two orders of magnitude in comparison to the previously fabricated DLC films, which are used as benchmarks in this investigation. Finally, it is shown, based on the cyclic voltammetry measurements that dopamine exhibits highly complex behavior on top of these carbon electrodes.The authors T.L, V.P., S.S., T.P., and J.K., would like to acknowledge the National Agency for Technology and Innovation (grant number 211488) and Aalto University (grant number 902380) for the financial support

    Dislocation core structures in Si-doped GaN

    Get PDF
    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 108 and (10 ± 1) × 109 cm−2. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.This work was funded in part by the Cambridge Commonwealth trust, St. John's College, British Federation of Women Graduates and the EPSRC. M.A.M. acknowledges the support from the Royal Society through a University Research Fellowship. Additional support was provided by the EPSRC through the UK National Facility for Aberration-Corrected STEM (SuperSTEM).This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.493745

    Segregation of In to dislocations in InGaN.

    Get PDF
    Dislocations are one-dimensional topological defects that occur frequently in functional thin film materials and that are known to degrade the performance of InxGa1-xN-based optoelectronic devices. Here, we show that large local deviations in alloy composition and atomic structure are expected to occur in and around dislocation cores in InxGa(1-x)N alloy thin films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods presented here are also widely applicable for predicting composition fluctuations associated with strain fields in other inorganic functional material thin films.This work was funded in part by the Cambridge Commonwealth trust, St. John’s College and the EPSRC. SKR is funded through the Cambridge-India Partnership Fund and Indian Institute of Technology Bombay via a scholarship. MAM acknowledges support from the Royal Society through a University Research Fellowship. Additional support was provided by the EPSRC through the UK National Facility for Aberration-Corrected STEM (SuperSTEM). The Titan 80- 200kV ChemiSTEMTM was funded through HM Government (UK) and is associated with the capabilities of the University of Manchester Nuclear Manufacturing (NUMAN) capabilities. SJH acknowledges funding from the Defence Treat Reduction Agency (DTRA) USA (grant number HDTRA1-12-1-0013).This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/nl5036513
    • …
    corecore