13 research outputs found

    Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

    Get PDF
    Abstract. The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay halflife. The methodology of the experimental campaign presently running at INFN - Laboratori Nazionali del Sud is reported and the experimental challenges characterizing such activity are describe

    New results from the NUMEN project

    Get PDF
    NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0ÎœÎČÎČ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (18O,18Ne) and (20Ne,20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0ÎœÎČÎČ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beams and the MAGNEX magnetic spectrometer at INFN Laboratori Nazionali del Sud in Catania (Italy). The measured cross sections are extremely low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to increase the experimental yield of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest. peerReviewe

    Performance of GEANT4 in dosimetry applications: Calculation of X-ray spectra and kerma-to-dose equivalent conversion coefficients

    No full text
    In order to validate the Geant4 toolkit for dosimetry applications, simulations were performed to calculate conversion coefficients h(10, alpha) from air kerma free-in-air to personal dose equivalent Hp(10, a). The simulations consisted of two parts: the production of X-rays with radiation qualities of narrow and wide spectra, and the interaction of radiation with ICRU tissue-equivalent and ISO water slab phantoms. The half-value layers of the X-ray spectra obtained by simulation were compared with experimental results. Mean energy, spectral resolution, half-value layers and conversion coefficients were compared with ISO reference values. The good agreement between results from simulation and reference data shows that the Geant4 is suitable for dosimetry applications which involve photons with energies in the range of ten to a few hundreds of keV. (C) 2008 Elsevier Ltd. All rights reserved.CAPES (Brazil)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    A Time Efficient Optical Model for GATE Simulation of a LYSO Scintillation Matrix Used in PET Applications

    No full text
    A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.CNPq, Brazilian agencyConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CAPES, Brazilian agencyCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Statistical analysis of the Doppler broadening coincidence spectrum of electron-positron annihilation radiation in silicon

    No full text
    We report a statistical analysis of Doppler broadening coincidence data of electron-positron annihilation radiation in silicon using a (22)Na source. The Doppler broadening coincidence spectrum was fit using a model function that included positron annihilation at rest with 1s, 2s, 2p, and valence band electrons. In-flight positron annihilation was also fit. The response functions of the detectors accounted for backscattering, combinations of Compton effects, pileup, ballistic deficit, and pulse-shaping problems. The procedure allows the quantitative determination of positron annihilation with core and valence electron intensities as well as their standard deviations directly from the experimental spectrum. The results obtained for the core and valence band electron annihilation intensities were 2.56(9)% and 97.44(9)%, respectively. These intensities are consistent with published experimental data treated by conventional analysis methods. This new procedure has the advantage of allowing one to distinguish additional effects from those associated with the detection system response function. (C) 2009 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Brazilian agencies FAPESPCNPqConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPE

    Response of G-NUMEN LaBr3_3(Ce) detectors to high counting rates

    No full text
    International audienceThe G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (Nuclear Matrix Element for the Neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims at exploring Double Charge Exchange (DCE) reactions in order to obtain crucial information about the neutrinoless double beta decay (0ÎœÎČÎČ0\nu\beta\beta). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the deexcitation of the excited states populated via DCE reactions with good energy resolution and detection efficiency, amidst a background composed of transitions from competing reaction channels with far higher cross sections. To achieve this, the G-NUMEN signals will be processed in coincidence with those generated by the detection of the reaction ejectiles in the MAGNEX Focal Plane Detector(FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3_3(Ce) scintillators. Initial tests have been conducted on the first detectors of the array, allowing for the determination of their performance at high rates

    Response of G-NUMEN LaBr3_3(Ce) detectors to high counting rates

    No full text
    International audienceThe G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (Nuclear Matrix Element for the Neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims at exploring Double Charge Exchange (DCE) reactions in order to obtain crucial information about the neutrinoless double beta decay (0ÎœÎČÎČ0\nu\beta\beta). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the deexcitation of the excited states populated via DCE reactions with good energy resolution and detection efficiency, amidst a background composed of transitions from competing reaction channels with far higher cross sections. To achieve this, the G-NUMEN signals will be processed in coincidence with those generated by the detection of the reaction ejectiles in the MAGNEX Focal Plane Detector(FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3_3(Ce) scintillators. Initial tests have been conducted on the first detectors of the array, allowing for the determination of their performance at high rates

    The NUMEN Project: An Update of the Facility Toward the Future Experimental Campaigns

    No full text
    International audienceThe goal of NUMEN project is to access experimentally driven information on Nuclear Matrix Elements (NME) involved in the neutrinoless double beta decay (0ÎœÎČÎČ) by accurate measurements of the cross sections of heavy-ion induced double charge-exchange reactions. In particular, the (18O, 18Ne) and (20Ne, 20O) reactions are adopted as tools for ÎČ+ÎČ+ and ÎČ-ÎČ- decays, respectively. The experiments are performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania using the Superconducting Cyclotron to accelerate the beams and the MAGNEX magnetic spectrometer to detect the reaction products. The measured cross sections are very low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. In order to make feasible a systematic study of all the candidate nuclei, a major upgrade of the LNS facility is foreseen to increase the experimental yield by more than two orders of magnitude. To this purpose, frontier technologies are being developed for both the accelerator and the detection systems. An update description of the NUMEN project is presented here, focusing on recent achievements from the R&D activity

    Recent experimental activity on heavy-ion induced reactions within the NUMEN project

    Get PDF
    The possibility to use a special class of heavy-ion induced direct reactions, such as double charge exchange reactions, is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The strategies adopted in the experimental campaigns performed at INFN - Laboratori Nazionali del Sud are briefly described, emphasizing the advantages of the multi-channel approach to nuclear reaction data analysis
    corecore