6 research outputs found

    Characterization of lignin and lignin-derivatives from biomass. Application as expander of lead-acid battery

    Full text link
    Expanders, as lignosulfonates, are crucial for a good performance of Pb/acid batteries. In the process of discharge, the Pb and the PbO2 go to PbSO4. The formed PbSO4 is adsorbed on the surface of the Pb electrode and dramatically reduces the lifetime of the battery by the formation of big PbSO4 crystals. In order to prevent that, the addition of expanders in the negative electrode is an economic solution to prevent the formation of big crystals. In this investigation, we propose the synthesis of several lignosulfonates obtained from lignin of many biomass origins. We have derivatized nine samples of lignin via microwave-assisted sulfonation, then we have characterized how efficient is the chosen synthesis method. The lignosulfonates obtained have been characterized by infrared spectroscopy (IR), proton nuclear magnetic resonance (1HNMR), two-dimensional correlated spectroscopy (COSY), and elemental analysis to acquire some relevant information about their structure in terms of functional groups. In this way, three commercial lignosulfonates, Vanisperse A, Indulin AT, and Oakwood, have been selected as references for our comparisons. Moreover, we have checked their electrochemical properties, using electrochemical techniques to compare their behavior with respect to the commercial lignosulfonates. Finally, we have selected one of them and we have tested its performance as an expander in a Pb/acid battery. That result is a very promising first approach, and we can conclude that lignosulfonates derivatives are a good and low-cost choice to improve the lifetime of Pb/acid batteries. In particular, it is shown that the incorporation of LignosB improves the cell formation as well as the first capacity (36.30% more) and the charge acceptance (63.16% more), being these relevant parameters in the performance of Pb/acid batterie

    Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids

    Get PDF
    Lignocellulosic residues from energy crops offer a high potential to recover bioproducts and biofuels that can be used as raw matter for agriculture activities within a circular economy framework. Anaerobic digestion (AD) is a well-established driver to convert these residues into energy and bioproducts. However, AD of lignocellulosic matter is slow and yields low methane potential, and therefore several pre-treatment methods have been proposed to increase the energy yield of this process. Hereby, we have assessed the pre-treatment of lignocellulosic biomass (barley straw) with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate and its effect on the biochemical methane potential (BMP). The BMP of the residue was evaluated at different inoculum to substrate (I/S) ratios and working under meso and thermophilic conditions. Solids destruction upon AD is highly enhanced by the IL-pretreatment. This also resulted in a higher BMP, both in mesophilic as well as thermophilic conditions. At the optimum I/S ratio of 2:1 (dried weight, dw), the BMP of the IL-pre-treated feedstock increased 28 and 80% for 35 days of thermophilic and mesophilic AD, respectively, as compared to the fresh feedstock, achieving values of 364 and 412 LCH4/kgTS. We also explored the effect of this pretreatment on the phosphorus recovery potential from the digestate upon release from the AD process. Thermophilic anaerobic digestion of IL-pre-treated biomass provided the highest P recovery potential from lignocellulosic residues (close to 100% of the theoretical P content of the lignocellulosic feedstock). Therefore, the pretreatment of lignocellulosic feedstock with IL before AD is a promising platform to obtain bioenergy and recover P to be regained for the agriculture sector

    El pirocloro (H3O)NbWO6-nH2O como catalizador para la deshidratación de Fructosa a 5-hidroximetilfurfural (HMF)

    Get PDF
    5-hidroximetilfurfural (HMF) es una importante molécula plataforma en la síntesis de diversos productos químicos. En este trabajo, informamos la deshidratación de fructosa a HMF en un sistema bifásico que contiene H2O y MIBK-2-ButOH como fase orgánica y (H3O)NbWO6-nH2O con estructura pirocloro como catalizador. El pirocloro se preparó por química del estado sólido a partir del precursor KNbWO6, seguido de un intercambio iónico en ácido sulfúrico. Este sólido exhibió una alta acidez, demostrando ser activo como catalizador ácido en la deshidratación de fructosa a (HMF). El catalizador es muy estable, ya que no se observó lixiviación de especies de niobio y wolframio a la fase líquida. Los resultados mostraron que el catalizador tiene un efecto catalítico sinérgico positivo en la conversión de fructosa a HMF. El rendimiento más alto de HMF del 33 % se logró a 150 ° C durante 90 min.Fil: Mayer, Sergio Federico. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Nanociencia y Nanotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Falcon, Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaFil: Poncio, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaFil: Ribotta, Pablo Daniel. Universidad Nacional de Córdoba. Secretaría de Ciencia y Tecnología. Instituto Superior de Investigación, Desarrollo y Servicio de Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Perez, Susana. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Morales delaRosa, Silvia. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Campos Martín, José M.. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Alonso, José Antonio. Consejo Superior de Investigaciones Científicas. Instituto de Catálisis y Petroleoquímica; EspañaFil: Fierro, José Luis G.. Instituto de Ciencia de Materiales de Madrid; EspañaXXI Congreso Argentino de Catálisis y X Congreso de Catálisis del MercosurSanta FeArgentinaSociedad Argentina de CatálisisInstituto de Investigaciones en Catálisis y PetroquímicaInstituto de Desarrollo Tecnológico para la Industria Químic

    Selective Fragmentation of Lignocellulosic Biomass with ZnCl2·4H2O Using a Dissolution/Precipitation Method

    No full text
    Lignocellulosic biomass dissolution in an inorganic salt hydrate (ZnCl·4HO) and its subsequent precipitation with water for the separation of its main compounds were investigated. For this purpose, different dissolution times and temperatures were studied, where 24 h and 70 °C were found to be the optimal choice. Three solids were obtained, which were analyzed and identified by XRD, SEM, NMR, and FTIR spectroscopy. Solid I is the undissolved part of the starting material, and it consists of lignin, which does not react with the inorganic salt hydrate and the unreacted cellulose. Solid II is a cellulose-rich solid with a low portion of hemicellulose and lignin, and Solid III is mainly pure lignin as the characterization results showed. Hemicellulose is mainly dissolved and hydrolyzed in the dissolution treatment and the amount present in all solids was very small. The reactivity of Solid I and Solid II in a hydrolysis reaction was tested (0.2 M/L HSO, 5 h, and 140 °C), where a significant improvement in the conversion and the yield of sugars was obtained with respect to the untreated samples in both cases. Solid II yields a large amount of total reducing sugars, with a % selectivity of 78–88%, depending on the starting biomass.This research was funded by the Comunidad de Madrid (Spain) and the ERDF (European Regional Development Fund), grant number S2018/EMT-4344 (BIOTRES-CM), and by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” Grant PID2020-112594RB-C33.Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/app13052953/s1, Detailed Experimental Methods, Characterization Section, and Figures S1–S12
    corecore