46 research outputs found

    Introducción al Método de Volúmenes finitos

    Get PDF
    Se presentará una introducción a las leyes de conservación escalares, incluyendo el cálculo de la solución de problemas de Riemann. Se presentarán los métodos de tipo Godunov y se discutirá la estabilidad en el caso lineal. Se comentará la extensión de los métodos a alto orden usando operadores de reconstrucción.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system

    Get PDF
    In this paper we consider the Lagrange-Projection technique in the framework of finite volume schemes applied to the shallow water system. We shall consider two versions of the scheme for the Lagrangian step: one fully implicit and one implicit-explicit, based on how the geometric source term is treated. First and second order well-balanced versions of the schemes are presented, in which the water at rest solutions are preserved. This allows to obtain efficient numerical schemes in low Froude number regimes, as the usual CFL restriction driven by the acoustic waves is avoided.This work is partially supported by projects RTI2018-096064-B-C21 and RTI2018-096064-B-C22 funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe”, projects P18-RT-3163 of Junta de Andalucía and UMA18-FEDERJA-161 of Junta de Andalucía-FEDER-University of Málaga. C. Caballero-Cárdenas is supported by the grant FPI2019/087773 funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future”. // Funding for open access charge: Universidad de Málaga/CBUA

    On the influence of the thickness of the sediment moving layer in the definition of the bedload transport formula in Exner systems

    Get PDF
    In this paper we study Exner system and introduce a modified general definition for bedload transport flux. The new formulation has the advantage of taking into account the thickness of the sediment layer which avoids mass conservation problems in certain situations. Moreover, it reduces to a classical solid transport discharge formula in the case of quasi-uniform regime. We also present several numerical tests where we compare the proposed sediment transport formula with the classical formulation and we show the behavior of the new model in different configurations

    Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy

    Get PDF
    In this work we present a deduction of the Saint-Venant-Exner model through an asymptotic analysis of the Navier-Stokes equations. A multi-scale analysis is performed in order to take into account that the velocity of the sediment layer is smaller than the one of the uid layer. This leads us to consider a shallow water type system for the uid layer and a lubrication Reynolds equation for the sediment one. This deduction provides some improvements with respect to the classical Saint- Venant-Exner model: (i) the deduced model has an associated energy. Moreover, it allows us to explain why classical models do not have an associated energy and how to modify them in order to recover a model with this property. (ii) The model incorporates naturally a necessary modi cation that must be taken into account in order to be applied to arbitrarily sloping beds. Furthermore, we show that this modi cation is di erent of the ones considered classically, and that it coincides with a classical one only if the solution has a constant free surface. (iii) The deduced solid transport discharge naturally depends on the thickness of the moving sediment layer, what allows to ensure sediment mass conservation. Moreover, we include a simpli ed version of the model for the case of quasi-stationary regimes. Some of these simpli ed models correspond to the generalization of classical ones such as Meyer- Peter&M uller and Ashida-Michiue models. Three numerical tests are presented to study the evolution of a dune for several de nition of the repose angle, to see the in uence of the proposed de nition of the e ective shear stress in comparison with the classical one, and by comparing with experimental data

    A multilayer shallow water system for polydisperse sedimentation

    Get PDF
    This work considers the flow of a fluid containing one disperse substance consisting of small particles that belong to different species differing in size and density. The flow is modelled by combining a multilayer shallow water approach with a polydisperse sedimentation process. This technique allows one to keep information on the vertical distribution of the solid particles in the mixture, and thereby to model the segregation of the particle species from each other, and from the fluid, taking place in the vertical direction of the gravity body force only. This polydisperse sedimentation process is described by the well-known Masliyah-Lockett-Bassoon (MLB) velocity functions. The resulting multilayer sedimentation-ow model can be written as a hyperbolic system with nonconservative products. The definitions of the nonconservative products are related to the hydrostatic pressure and to the mass and momentum hydrodynamic transfer terms between the layers. For the numerical discretization a strategy of two steps is proposed, where the first one is also divided into two parts. In the _rst step, instead of approximating the complete model, we approximate a reduced model with a smaller number of unknowns. Then, taking advantage of the fact that the concentrations are passive scalars in the system, we approximate the concentrations of the different species by an upwind scheme related to the numerical flux of the total concentration. In the second step, the effect of the transference terms defined in terms of the MLB model is introduced. These transfer terms are approximated by using a numerical ux function used to discretize the 1D vertical polydisperse model (see Bürger, García, Karlsen and Towers, J. Eng. Math. 60 (2008), 387{425). Finally, some numerical examples are presented. Numerical results suggest that the multilayer shallow water model could be adequate in situations where the settling takes place from a suspension that undergoes horizontal movement

    A general vertical decomposition of Euler equations: Multilayer-moment models

    Get PDF
    In this work, we present a general framework for vertical discretizations of Euler equations. It generalizes the usual moment and multilayer models and allows to obtain a family of multilayer-moment models. It considers a multilayer-type discretization where the layerwise velocity is a polynomial of arbitrary degree N on the vertical variable. The contribution of this work is twofold. First, we compare the multilayer and moment models in their usual formulation, pointing out some advantages/disadvantages of each approach. Second, a family of multilayer-moment models is proposed. As particular interesting case we shall consider a multilayer-moment model with layerwise linear horizontal velocity. Several numerical tests are presented, devoted to the comparison of multilayer and moment methods, and also showing that the proposed method with layerwise linear velocity allows us to obtain second order accuracy in the vertical direction. We show as well that the proposed approach allows to correctly represent the vertical structure of the solutions of the hydrostatic Euler equations. Moreover, the measured efficiency shows that in many situations, the proposed multilayer-moment model needs just a few layers to improve the results of the usual multilayer model with a high number of vertical layers

    An Efficient Two-Layer Non-hydrostatic Approach for Dispersive Water Waves

    Get PDF
    In this paper, we propose a two-layer depth-integrated non-hydrostatic system with improved dispersion relations. This improvement is obtained through three free parameters: two of them related to the representation of the pressure at the interface and a third one that controls the relative position of the interface concerning the total height. These parameters are then optimized to improve the dispersive properties of the resulting system. The optimized model shows good linear wave characteristics up to kH ≈ 10, that can be improved for long waves. The system is solved using an efficient formally second-order well-balanced and positive preserving hybrid finite volume/difference numerical scheme. The scheme consists of a two-step algorithm based on a projection-correction type scheme. First, the hyperbolic part of the system is discretized using a Polynomial Viscosity Matrix path-conservative finite-volume method. Second, the dispersive terms are solved using finite differences. The method has been applied to idealized and challenging physical situations that involve nearshore breaking. Agreement with laboratory data is excellent. This technique results in an accurate and efficient method

    A two-layer shallow water model for bedload sediment transport: convergence to Saint-Venant-Exner model

    Get PDF
    A two-layer shallow water type model is proposed to describe bedload sediment transport. The upper layer is lled by water and the lower one by sediment. The key point falls on the de nition of the friction laws between the two layers, which are a generalization of those introduced in Fern andez-Nieto et al. (ESAIM: M2AN, 51:115- 145, 2017). This de nition allows to apply properly the two-layer shallow water model for the case of intense and slow bedload sediment transport. Moreover, we prove that the two-layer model converges to a Saint-Venant-Exner system (SVE) including gravitational e ects when the ratio between the hydrodynamic and morphodynamic time scales is small. The SVE with gravitational e ects is a degenerated nonlinear parabolic system. This means that its numerical approximation is very expensive from a computational point of view, see for example T. Morales de Luna et al. (J. Sci. Comp., 48(1): 258{273, 2011). In this work, gravitational e ects are introduced into the two-layer system without such extra computational cost. Finally, we also consider a generalization of the model that includes a non-hydrostatic pressure correction for the uid layer and the boundary condition at the sediment surface. Numerical tests show that the model provides promising results and behave well in low transport rate regimes as well as in many other situations.Ministerio de Economía y Competitividad MTM 2015-70490-C2-1-RMinisterio de Economía y Competitividad MTM 2015-70490-C2-2-

    On a shallow water model for the simulation of turbidity currents

    Get PDF
    We present a model for hyperpycnal plumes or turbidity currents that takes into account the interaction between the turbidity current and the bottom, considering deposition and erosion effects as well as solid transport of particles at the bed load due to the current. Water entrainment from the ambient water in which the turbidity current plunges is also considered. Motion of ambient water is neglected and the rigid lid assumption is considered. The model is obtained as a depth-average system of equations under the shallow water hypothesis describing the balance of fluid mass, sediment mass and mean ow. The character of the system is analyzed and numerical simulations are carried out using finite volume schemes and path-conservative Roe schemes
    corecore