6 research outputs found

    Impact of Acute Dietary Manipulations on Dual-Energy X-ray Absorptiometry Estimates of Visceral Adipose Tissue

    Get PDF
    Dual-energy x-ray absorptiometry (DXA) is viewed as a superior method of body composition assessment, but whole-body DXA scans are impacted by variation in pre-assessment activities, such as eating and drinking. DXA software now allows for estimation of visceral adipose tissue (VAT), which has been implicated in a number of diseases. It is unknown to what extent food and fluid intake affect VAT estimates. PURPOSE: determine the effects of acute high-carbohydrate (HC) and very low-carbohydrate (VLC) diets on DXA estimates of VAT. METHODS: Male and female adults completed two one-day dietary conditions in random order: a VLC diet (1 – 1.5 g CHO/kg) and a HC diet (9 g CHO/kg). The diets were isocaloric to each other, and all food items were provided to participants. DXA scans were conducted in the morning after an overnight fast and in the afternoon soon after the third standardized meal. VAT volume, mass, and area were obtained, and paired samples t-tests were performed to compare the changes in VAT measures between diets. RESULTS: Fifteen males (age 22 ± 3, BF% 21 ± 5%) and eighteen females (age 21 ± 2, BF% 31 ± 5%) were included in the analysis. The change in VAT volume between the fasted and fed visits was different between diets (HC: +1.6%; VLC: -9.2%, p= 0.047). There were also trends for differences in VAT mass (p= 0.089) and area (p= 0.096) changes between diets. CONCLUSIONS: Within a single day, VAT estimates are differentially affected by isocaloric HC and VLC diets, with VLC consumption leading to reductions in VAT estimates. The content of the diet on the day of a DXA scan can affect estimates of VAT, which could spuriously influence the categorization of an individual’s health risk by DXA VAT estimates. Standardization of food intake prior to scans, preferably in the form of an overnight fast, should be employed to eliminate this important source of error

    Eight weeks of resistance training in conjunction with glutathione and L-Citrulline supplementation increases lean mass and has no adverse effects on blood clinical safety markers in resistance-trained males

    No full text
    BACKGROUND: Supplementation of combined glutathione (GSH) with L-citrulline in response to a single bout of resistance exercise has been shown to increase plasma nitric oxide metabolites, nitrite and nitrate and cyclic guanosine monophosphate (cGMP), which may play a role in muscle protein synthesis. As a result, in response to resistance training (RT) these responses may establish a role for GSH + L-citrulline to increase muscle mass. This study attempted to determine the effects of an 8-week RT program in conjunction with GSH (Setria®) + L-citrulline, L-citrulline-malate, or placebo supplementation on lean mass and its association with muscle strength. The secondary purpose was to assess the safety of such supplementation protocol by assessing clinical chemistry markers. METHODS: In a randomized, double-blind, placebo-controlled design, 75 resistance-trained males were randomly assigned to ingest GSH + L-citrulline (GSH + CIT), L-citrulline-malate, or cellulose placebo daily while also participating in 8 weeks of RT. The full dose of each supplement was delivered in capsules that were identical in weight, size, shape, and color. Participants completed testing sessions for body composition and muscle strength before and after 4 and 8 weeks of RT and supplementation. Venous blood samples were obtained before and after 8 weeks. RESULTS: Leg press was increased with RT but was not significantly different between groups (p > 0.05); however, bench press strength was not increased with RT (p > 0.05). There were no significant changes in total body mass, fat mass, or total body water during 8 weeks of RT and supplementation. Lean mass increased in both GSH + CIT when compared to PLC; however, the increase was significant only after 4 weeks. Lean mass and strength were positively correlated (p < 0.05) in GSH + CIT, but not CIT-malate or PLC. Neither RT nor supplementation had any significant effects on blood clinical chemistry variables (p > 0.05). CONCLUSION: Compared to PLC, supplementation of GSH + CIT during resistance training increased lean mass after 4 weeks of RT and was positively associated with muscle strength. However, after 8 weeks of RT there were no significant differences in any of the measured variables
    corecore