17,552 research outputs found

    On the perturbative corrections around D-string instantons

    Get PDF
    We study F4{\cal F}^4-threshold corrections in an eight dimensional S-dual pair of string theories, as a prototype of dual string vacua with sixteen supercharges. We show that the orbifold CFT description of D-string instantons gives rise to a perturbative expansion similar to the one appearing on the fundamental string side. By an explicit calculation, using the Nambu-Goto action in the static gauge, we show that the first subleading term agrees precisely on the two sides. We then give a general argument to show that the agreement extends to all orders.Comment: 12 page

    Rotational properties of the binary and non-binary populations in the Trans-Neptunian belt

    Full text link
    We present results for the short-term variability of Binary Trans-Neptunian Objects (BTNOs). We performed CCD photometric observations using the 3.58 m Telescopio Nazionale Galileo, the 1.5 m Sierra Nevada Observatory telescope, and the 1.23 m Centro Astronomico Hispano Aleman telescope at Calar Alto Observatory. We present results based on five years of observations and report the short-term variability of six BTNOs. Our sample contains three classical objects: 2003MW12, or Varda, 2004SB60, or Salacia, and 2002 VT130; one detached disk object: 2007UK126; and two resonant objects: 2007TY430 and 2000EB173, or Huya. For each target, possible rotational periods and/or photometric amplitudes are reported. We also derived some physical properties from their lightcurves, such as density, primary and secondary sizes, and albedo. We compiled and analyzed a vast lightcurve database for Trans-Neptunian Objects (TNOs) including centaurs to determine the lightcurve amplitude and spin frequency distributions for the binary and non-binary populations. The mean rotational periods, from the Maxwellian fits to the frequency distributions, are 8.63+/-0.52 h for the entire sample, 8.37+/-0.58 h for the sample without the binary population, and 10.11+/-1.19 h for the binary population alone. Because the centaurs are collisionally more evolved, their rotational periods might not be so primordial. We computed a mean rotational period, from the Maxwellian fit, of 8.86+/-0.58 h for the sample without the centaur population, and of 8.64+/-0.67 h considering a sample without the binary and the centaur populations. According to this analysis, regular TNOs spin faster than binaries, which is compatible with the tidal interaction of the binaries. Finally, we examined possible formation models for several systems studied in this work and by our team in previous papers.Comment: Accepted for publication in Astronomy and Astrophysics (June 26th, 2014); minor changes with published version; 21 pages, 17 figures, 7 table

    AdS/CFT correspondence and D1/D5 systems in theories with 16 supercharges

    Get PDF
    We discuss spectra of AdS3AdS_3 supergravities, arising in the near horizon geometry of D1/D5 systems in orbifolds/orientifolds of type IIB theory with 16 supercharges. These include models studied in a recent paper (hep-th/0012118), where the group action involves also a shift along a transversal circle, as well as IIB/ΩI4\Omega I_4, which is dual to IIB on K3K3. After appropriate assignements of the orbifold group eigenvalues and degrees to the supergravity single particle spectrum, we compute the supergravity elliptic genus and find agreement, in the expected regime of validity, with the elliptic genus obtained using U-duality map from (4,4) CFTs of U-dual backgrounds. Since this U-duality involves the exchange of KK momentum PP and D1 charge NN, it allows us to test the (4,4) CFTs in the P<N/4P < N/4 and N<P/4N < P/4 regimes by two different supergravity duals.Comment: 28 pages, no figure

    Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom

    Full text link
    We consider natural complex Hamiltonian systems with nn degrees of freedom given by a Hamiltonian function which is a sum of the standard kinetic energy and a homogeneous polynomial potential VV of degree k>2k>2. The well known Morales-Ramis theorem gives the strongest known necessary conditions for the Liouville integrability of such systems. It states that for each kk there exists an explicitly known infinite set \scM_k\subset\Q such that if the system is integrable, then all eigenvalues of the Hessian matrix V''(\vd) calculated at a non-zero \vd\in\C^n satisfying V'(\vd)=\vd, belong to \scM_k. The aim of this paper is, among others, to sharpen this result. Under certain genericity assumption concerning VV we prove the following fact. For each kk and nn there exists a finite set \scI_{n,k}\subset\scM_k such that if the system is integrable, then all eigenvalues of the Hessian matrix V''(\vd) belong to \scI_{n,k}. We give an algorithm which allows to find sets \scI_{n,k}. We applied this results for the case n=k=3n=k=3 and we found all integrable potentials satisfying the genericity assumption. Among them several are new and they are integrable in a highly non-trivial way. We found three potentials for which the additional first integrals are of degree 4 and 6 with respect to the momenta.Comment: 54 pages, 1 figur

    Direct and Heterodyne Detection of Microwaves in a Metallic Single Wall Carbon Nanotube

    Full text link
    This letter reports measurements of microwave (up to 4.5 GHz) detection in metallic single-walled carbon nanotubes. The measured voltage responsivity was found to be 114 V/W at 77K. We also demonstrated heterodyne detection at 1 GHz. The detection mechanism can be explained based on standard microwave detector theory and the nonlinearity of the DC IV-curve. We discuss the possible causes of this nonlinearity. While the frequency response is limited by circuit parasitics in this measurement, we discuss evidence that indicates that the effect is much faster and that applications of carbon nanotubes as terahertz detectors are feasible

    Reionization and Cosmology with 21 cm Fluctuations

    Full text link
    Measurement of the spatial distribution of neutral hydrogen via the redshifted 21 cm line promises to revolutionize our knowledge of the epoch of reionization and the first galaxies, and may provide a powerful new tool for observational cosmology from redshifts 1<z<4 . In this review we discuss recent advances in our theoretical understanding of the epoch of reionization (EoR), the application of 21 cm tomography to cosmology and measurements of the dark energy equation of state after reionization, and the instrumentation and observational techniques shared by 21 cm EoR and post reionization cosmology machines. We place particular emphasis on the expected signal and observational capabilities of first generation 21 cm fluctuation instruments.Comment: Invited review for Annual Review of Astronomy and Astrophysics (2010 volume

    SPITZER observations of the λ Orionis cluster. II. Disks around solar-type and low-mass stars

    Get PDF
    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (~5Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M_⊙ to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with “evolved disks” (with smaller excesses than optically thick disk systems), and “transitional disk” candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ~6% for K-type stars (R_C − J 4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ~5Myr

    Painlev\'e-Gullstrand synchronizations in spherical symmetry

    Full text link
    A Painlev\'e-Gullstrand synchronization is a slicing of the space-time by a family of flat spacelike 3-surfaces. For spherically symmetric space-times, we show that a Painlev\'e-Gullstrand synchronization only exists in the region where (dr)2≀1(dr)^2 \leq 1, rr being the curvature radius of the isometry group orbits (22-spheres). This condition says that the Misner-Sharp gravitational energy of these 2-spheres is not negative and has an intrinsic meaning in terms of the norm of the mean extrinsic curvature vector. It also provides an algebraic inequality involving the Weyl curvature scalar and the Ricci eigenvalues. We prove that the energy and momentum densities associated with the Weinberg complex of a Painlev\'e-Gullstrand slice vanish in these curvature coordinates, and we give a new interpretation of these slices by using semi-metric Newtonian connections. It is also outlined that, by solving the vacuum Einstein's equations in a coordinate system adapted to a Painlev\'e-Gullstrand synchronization, the Schwarzschild solution is directly obtained in a whole coordinate domain that includes the horizon and both its interior and exterior regions.Comment: 16 page

    Dynamic simulations in SixTrack

    Full text link
    The DYNK module allows element settings in SixTrack to be changed on a turn-by-turn basis. This document contains a technical description of the DYNK module in SixTrack. It is mainly intended for a developer or advanced user who wants to modify the DYNK module, for example by adding more functions that can be used to calculate new element settings, or to add support for new elements that can be used with DYNK.Comment: Submission to CERN yellow report / conference proceeding, the 2015 collimation tracking code worksho
    • 

    corecore