419 research outputs found

    Immunoglobulin GM 3 23 5,13,14 phenotype is strongly associated with IgG1 antibody responses to Plasmodium vivax vaccine candidate antigens PvMSP1-19 and PvAMA-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Humoral immune responses play a key role in the development of immunity to malaria, but the host genetic factors that contribute to the naturally occurring immune responses to malarial antigens are not completely understood. The aim of the present investigation was to determine whether, in subjects exposed to malaria, GM and KM allotypes--genetic markers of immunoglobulin γ and κ-type light chains, respectively--contribute to the magnitude of natural antibody responses to target antigens that are leading vaccine candidates for protection against <it>Plasmodium vivax</it>.</p> <p>Methods</p> <p>Sera from 210 adults, who had been exposed to malaria transmission in the Brazilian Amazon endemic area, were allotyped for several GM and KM determinants by a standard hemagglutination-inhibition method. IgG subclass antibodies to <it>P. vivax </it>apical membrane antigen 1 (PvAMA-1) and merozoite surface protein 1 (PvMSP1-19) were determined by an enzyme-linked immunosorbent assay. Multiple linear regression models and the non-parametric Mann-Whitney test were used for data analyses.</p> <p>Results</p> <p>IgG1 antibody levels to both PvMSP1-19 and PvAMA-1 antigens were significantly higher (<it>P </it>= 0.004, <it>P </it>= 0.002, respectively) in subjects with the GM 3 23 5,13,14 phenotype than in those who lacked this phenotype.</p> <p>Conclusions</p> <p>Results presented here show that immunoglobulin GM allotypes contribute to the natural antibody responses to <it>P. vivax </it>malaria antigens. These findings have important implications for the effectiveness of vaccines containing PvAMA-1 or PvMSP1-19 antigens. They also shed light on the possible role of malaria as one of the evolutionary selective forces that may have contributed to the maintenance of the extensive polymorphism at the GM loci.</p

    Bioenergetic Consequences of PINK1 Mutations in Parkinson Disease

    Get PDF
    BACKGROUND: Mutations of the gene for PTEN-induced kinase 1 (PINK1) are a cause of familial Parkinson's disease (PD). PINK1 protein has been localised to mitochondria and PINK1 gene knockout models exhibit abnormal mitochondrial function. The purpose of this study was to determine whether cells derived from PD patients with a range of PINK1 mutations demonstrate similar defects of mitochondrial function, whether the nature and severity of the abnormalities vary between mutations and correlate with clinical features. METHODOLOGY: We investigated mitochondrial bioenergetics in live fibroblasts from PINK1 mutation patients using single cell techniques. We found that fibroblasts from PINK1 mutation patients had significant defects of bioenergetics including reduced mitochondrial membrane potential, altered redox state, a respiratory deficiency that was determined by substrate availability, and enhanced sensitivity to calcium stimulation and associated mitochondrial permeability pore opening. There was an increase in the basal rate of free radical production in the mutant cells. The pattern and severity of abnormality varied between different mutations, and the less severe defects in these cells were associated with later age of onset of PD. CONCLUSIONS: The results provide insight into the molecular pathology of PINK1 mutations in PD and also confirm the critical role of substrate availability in determining the biochemical phenotype--thereby offering the potential for novel therapeutic strategies to circumvent these abnormalities

    Allelic frequencies and statistical data obtained from 12 codis STR loci in an admixed population of the Brazilian Amazon

    Get PDF
    The allelic frequencies of 12 short tandem repeat loci were obtained from a sample of 307 unrelated individuals living in Macapá, a city in the northern Amazon region, Brazil. These loci are the most commonly used in forensics and paternity testing. Based on the allele frequency obtained for the population of Macapá, we estimated an interethnic admixture for the three parental groups (European, Native American and African) of, respectively, 46%, 35% and 19%. Comparing these allele frequencies with those of other Brazilian populations and of the Iberian Peninsula population, no significant distances were observed. The interpopulation genetic distances (FST coefficients) to the present database ranged from FST = 0.0016 between Macapá and Belém to FST = 0.0036 between Macapá and the Iberian Peninsula

    Childhood asthma outcomes during the COVID-19 pandemic: Findings from the PeARL multi-national cohort.

    Get PDF
    BACKGROUND: The interplay between COVID-19 pandemic and asthma in children is still unclear. We evaluated the impact of COVID-19 pandemic on childhood asthma outcomes. METHODS: The PeARL multinational cohort included 1,054 children with asthma and 505 non-asthmatic children aged between 4-18 years from 25 pediatric departments, from 15 countries globally. We compared the frequency of acute respiratory and febrile presentations during the first wave of the COVID-19 pandemic between groups and with data available from the previous year. In children with asthma, we also compared current and historical disease control. RESULTS: During the pandemic, children with asthma experienced fewer upper respiratory tract infections, episodes of pyrexia, emergency visits, hospital admissions, asthma attacks and hospitalizations due to asthma, in comparison to the preceding year. Sixty-six percent of asthmatic children had improved asthma control while in 33% the improvement exceeded the minimal clinically important difference. Pre-bronchodilatation FEV1 and peak expiratory flow rate were improved during the pandemic. When compared to non-asthmatic controls, children with asthma were not at increased risk of LRTIs, episodes of pyrexia, emergency visits or hospitalizations during the pandemic. However, an increased risk of URTIs emerged. CONCLUSION: Childhood asthma outcomes, including control, were improved during the first wave of the COVID-19 pandemic, probably because of reduced exposure to asthma triggers and increased treatment adherence. The decreased frequency of acute episodes does not support the notion that childhood asthma may be a risk factor for COVID-19. Furthermore, the potential for improving childhood asthma outcomes through environmental control becomes apparent

    Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae

    Get PDF
    The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches
    corecore