5 research outputs found

    Final-State Interactions in (e,e'p) Reactions with Polarized Nuclei

    Full text link
    The cross section for coincidence, quasielastic proton knock-out by electrons from a polarized K39 nucleus is computed in DWIA using an optical potential in describing the wave function of the ejected nucleon. The dependence of the FSI on the initial polarization angles of the nucleus is analyzed and explained in a new, semi-classical picture of the reaction in which the nuclear transparency decreases as a function of the amount of nuclear matter that the proton has to cross, thus providing a method for obtaining detailed information on its mean free path in finite nuclei. We propose a procedure to find the best initial kinematical conditions for minimizing the FSI which will be useful as a guide for future experiments with polarized nuclei.Comment: 26 pages, 8 Postscript figures, uses epsf.st

    Inclusive quasielastic scattering of polarized electrons from polarized nuclei

    Full text link
    The inclusive quasielastic response functions that appear in the scattering of polarized electrons from polarized nuclei are computed and analyzed for several closed-shell-minus-one nuclei with special attention paid to 39K. Results are presented using two models for the ejected nucleon --- when described by a distorted wave in the continuum shell model or by a plane wave in PWIA with on- and off-shell nucleons. Relativistic effects in kinematics and in the electromagnetic current have been incorporated throughout. Specifically, the recently obtained expansion of the electromagnetic current in powers only of the struck nucleon's momentum is employed for the on-shell current and the effects of the first-order terms (spin-orbit and convection) are compared with the zeroth-order (charge and magnetization) contributions. The use of polarized inclusive quasielastic electron scattering as a tool for determining near-valence nucleon momentum distributions is discussed.Comment: 51 LaTeX pages, 14 Postscript figure

    Relativistic Effects in Electromagnetic Meson-Exchange Currents for One-Particle Emission Reactions

    Full text link
    Following recent studies of non-relativistic reductions of the single-nucleon electromagnetic current operator, here we extend the treatment to include meson exchange current operators. We focus on one-particle emission electronuclear reactions. In contrast to the traditional scheme where approximations are made for the transferred momentum, transferred energy and momenta of the initial-state struck nucleons, we treat the problem exactly for the transferred energy and momentum, thus obtaining new current operators which retain important aspects of relativity not taken into account in the traditional non-relativistic reductions. We calculate the matrix elements of our current operators between the Fermi sphere and a particle-hole state for several choices of kinematics. We present a comparison between our results using approximate current operators and those obtained using the fully-relativistic operators, as well as with results obtained using the traditional non-relativistic current operators.Comment: LaTeX, 31 pages, 7 Postscript figures, to be published in Nucl. Phys.

    Meson-exchange contributions to the nuclear charge operator

    Get PDF
    The role of the meson-exchange current correction to the nuclear charge operator is studied in electron scattering processes involving the excitation of medium and heavy nuclei to energies up to the quasi-elastic peak. The effect of these contributions in the quasi-free electron scattering process is a reduction of at most a 3% in the longitudinal response at the energy of the peak, a value which is below the experimental error and must not be taken into account in calculations in this energy region. On the other hand, the excitation of low-lying nuclear levels of neutronic character shows, with respect to the protonic ones, a considerable effect due to the inclusion of the two-body term in the charge operator. More realistic calculations, such as those performed in the random-phase approximation framework, give rise to a mixing of one particle-one hole configurations of both kinds which reduce these effects. However, it has been found that the excitation of some of these levels is sizeably affected by the meson-exchange contribution. More precise experimental data concerning some of these states, such as e.g. the high-spin states in 208Pb, could throw some light in the problem of a more feasible determination of these effects and, as a consequence, could provide an alternative procedure to obtain the charge neutron form factor.Comment: 26 pages, 10 figures, LateX file and Postscript figure

    Analysis of Meson Exchange and Isobar Currents in (e,e'p) Reactions from O-16

    Get PDF
    An analysis of the effects of meson exchange and isobar currents in exclusive (e,e'p) processes from O-16 under quasi-free kinematics is presented. A model that has probed its feasibility for inclusive quasi-elastic (e,e') processes is considered. Sensitivity to final state interactions between the outgoing proton and the residual nucleus is discussed by comparing the results obtained with phenomenological optical potentials and a continuum nuclear shell-model calculation. The contribution of the meson-exchange and isobar currents to the response functions is evaluated and compared to previous calculations, which differ notably from our results. These two-body contributions cannot solve the puzzle of the simultaneous description of the different responses experimentally separated. Copyright 1999 by The American Physical SocietyComment: 5 pages, plus 3 PS figures. To be published in Phys. Rev. C Updated figure
    corecore