42 research outputs found

    Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia

    Get PDF
    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001–December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance

    Analysis of Precipitation and Evapotranspiration in Atlantic Rainforest Remnants in Southeastern Brazil from Remote Sensing Data

    Get PDF
    The Atlantic Rainforest has been intensely devastated since the beginning of the colonization of Brazil, mainly due to wood extraction and urban and rural settlement. Although the Atlantic Rainforest has been reduced and fragmented, its remnants are important sources of heat and water vapor to the atmosphere. The present study aimed to characterize and to analyze the temporal dynamics of precipitation and evapotranspiration in the Atlantic Rainforest remnants in São Paulo state, southeastern Brazil, for the period from January 2000 to December 2010. To achieve this, global precipitation and evapotranspiration data from TRMM satellite and MOD16 algorithm as well as forest remnant maps produced by SOS Mata Atlântica Foundation and Brazilian National Institute for Space Research (INPE) were used. Results found in this study demonstrated that the use of remote sensing was an important tool for analyzing hydrological variables in Atlantic Rainforest remnants, which can contribute to better understand the interaction between tropical forests and the atmosphere, and for generating input data necessary for surface models coupled to atmospheric general circulation models

    Effects of land‐cover changes on the partitioning of surface energy and water fluxes in Amazonia using high‐resolution satellite imagery

    Full text link
    Spatial variability of surface energy and water fluxes at local scales is strongly controlled by soil and micrometeorological conditions. Thus, the accurate estimation of these fluxes from space at high spatial resolution has the potential to improve prediction of the impact of land‐use changes on the local environment. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Large‐Scale Biosphere‐Atmosphere Experiment in Amazonia (LBA) data were used to examine the partitioning of surface energy and water fluxes over different land‐cover types in one wet year (2004) and one drought year (2005) in eastern Rondonia state, Brazil. The spatial variation of albedo, net radiation (Rn), soil (G) and sensible (H) heat fluxes, evapotranspiration (ET), and evaporative fraction (EF) were primarily related to the lower presence of forest (primary [PF] or secondary [SF]) in the western side of the Ji‐Parana River in comparison with the eastern side, located within the Jaru Biological Reserve protected area. Water limitation in this part of Amazonia tends to affect anthropic (pasture [PA] and agriculture [AG]) ecosystems more than the natural land covers (PF and SF). We found statistically significant differences on the surface fluxes prior to and ~1 year after the deforestation. Rn over forested areas is ~10% greater in comparison with PA and AG. Deforestation and consequent transition to PA or AG increased the total energy (~200–400%) used to heat the soil subsurface and raise air temperatures. These differences in energy partitioning contributed to approximately three times higher ET over forested areas in comparison with nonforested areas. The conversion of PF to AG is likely to have a higher impact in the local climate in this part of Amazonia when compared with the change to PA and SF, respectively. These results illustrate the importance of conserving secondary forest areas in Amazonia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151879/1/eco2126_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151879/2/eco2126.pd

    Methods to Evaluate Land-Atmosphere Exchanges in Amazonia Based on Satellite Imagery and Ground Measurements

    Get PDF
    During the last three decades, intensive campaigns and experiments have been conducted for acquiring micrometeorological data in the Amazonian ecosystems, which has increased our understanding of the variation, especially seasonally, of the total energy available for the atmospheric heating process by the surface, evapotranspiration and carbon exchanges. However, the measurements obtained by such experiments generally cover small areas and are not representative of the spatial variability of these processes. This chapter aims to discuss several algorithms developed to estimate surface energy and carbon fluxes combining satellite data and micrometeorological observations, highlighting the potentialities and limitations of such models for applications in the Amazon region. We show that the use of these models presents an important role in understanding the spatial and temporal patterns of biophysical surface parameters in a region where most of the information is local. Data generated may be used as inputs in earth system surface models allowing the evaluation of the impact, both in regional as well as global scales, caused by land-use and land-cover changes

    Chromatographic Methods Applied to the Characterization of Bio-Oil from the Pyrolysis of Agro-Industrial Biomasses

    Get PDF
    Biomass conversion into solid, liquid and gaseous products by pyrolytic technology is one of the most promising alternative to convert the biomass into useful products and energy. The total characterization of the products from the pyrolysis of biomass is one of the great challenges in this field, mainly due to their molecular complexity. Pyrolysis is a process that causes degradation of biomass in a non‐oxidative atmosphere, at relatively high temperatures, producing a solid residue rich in carbon and mineral matter, gases and bio‐oil. The yield and properties of the products depend on the nature of the biomass and the type of the pyrolysis process (type of reactor, temperature, gas flow, catalyst). Due to the high molecular complexity of bio‐oil, many different technical had been developed to their complete characterization. This chapter describes the principles of the techniques and main application of chromatographic methods (GC, LC, GC × GC, LC × LC, Nano‐LC) in the analysis of bio‐oils derived from thermo‐degradation of biomasses. Especial attention is carried out to two‐dimensional techniques that represent the state of the art in terms of separation, sensibility, selectivity and velocity of data acquisition for characterization of complex organic mixtures. For proper use of bio‐oil in the chemical industry, it is essential the identification and unambiguous determination of its major constituents. Only then, it is possible to propose a recovery route of some of these components for the development of an industry dedicated to a bio‐refinery. For this, chromatographic methods, especially GC × GC/MS, are fundamental because they allow analysis with high sensitivity and accuracy in identifying each constituent of the bio‐oil

    Effect of essential oil of Alpinia zerumbet on cardiovascular and autonomic function in rats with isoproterenol induced acute myocardial infarction

    Get PDF
    Abstract Alpinia zerumbet is a plant popularly used to treat hypertension and anxiety. Studies with Alpinia zerumbet demonstrate antihypertensive and vasodilator effects, among others. The objective of this study was to analyze the effect of essential oil of Alpinia zerumbet (EOAz) on cardiovascular and autonomic function in rats with isoproterenol-induced myocardial infarction. Male Wistar rats (n=32) were equally allocated into four groups: Control, ISO (150mg/kg, subcutaneous), EOAz (100mg/kg by gavage), ISO+EOAz. The rats were evaluated for cardiovascular and, autonomic parameters, electrocardiogram, and infarct size. EOAz was not able to reduce the electrocardiographic variations induced by ISO. Heart rate variability showed a decrease in sympathetic modulation on the heart in the groups treated with EOAz. The cardiopulmonary reflex induced by serotonin invoked a superior blood pressure variation at the 2 µg/kg dose in the EOAz treated groups, while the heart rate variation was significantly higher at the 16 µg/kg dose, when compared to other doses, in all groups, except EOAz+ISO. The sympathetic vagal index was higher in ISO group than in control. EOAz did not reduce the infarct size. We conclude that pretreatment with EOAz does not reverse the hemodynamic and electrocardiographic damage caused by isoproterenol but does reduce sympathetic modulation

    Desenvolvimento de Software Educacional para Representação e Reconhecimento de Som Aplicado à Ausculta Cardiovascular

    Get PDF
    No ensino da medicina, especificamente, em laboratórios de estudos e práticas, existe uma preocupação de resguardar o máximo o paciente, buscando o mínimo de constrangimento, porém sem deixar que o aprendizado seja prejudicado. Com o objetivo de capacitar o discente para a prática em ausculta cardiovascular, sem que o contato com o paciente seja necessário, foi desenvolvido o sistema CARDIOS. Contendo informações de doenças cardiovasculares, o aluno conhece o som e o respectivo registro gráfico. A utilização de aparelhos específicos, como um estetoscópio eletrônico, promove a visualização e amplificação do som em tempo real. O uso de agentes inteligentes possibilita o reconhecimento do som cardíaco, classificando-o em normal ou patológico

    Improved tree height estimation of secondary forests in the Brazilian Amazon

    Get PDF
    This paper presents a novel approach for estimating the height of individual trees in secondary forests at two study sites: Manaus (central Amazon) and Santarém (eastern Amazon) in the Brazilian Amazon region. The approach consists of adjusting tree height-diameter at breast height (H:DBH) models in each study site by ecological species groups: pioneers, early secondary, and late secondary. Overall, the DBH and corresponding height (H) of 1,178 individual trees were measured during two field campaigns: August 2014 in Manaus and September 2015 in Santarém. We tested the five most commonly used log-linear and nonlinear H:DBH models, as determined by the available literature. The hyperbolic model: H = a.DBH/(b+DBH) was found to present the best fit when evaluated using validation data. Significant differences in the fitted parameters were found between pioneer and secondary species from Manaus and Santarém by F-test, meaning that site-specific and also ecological-group H:DBH models should be used to more accurately predict H as a function of DBH. This novel approach provides specific equations to estimate height of secondary forest trees for particular sites and ecological species groups. The presented set of equations will allow better biomass and carbon stock estimates in secondary forests of the Brazilian Amazon
    corecore