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Abstract

The  Atlantic  Rainforest  has  been  intensely  devastated  since  the  beginning  of  the
colonization of Brazil, mainly due to wood extraction and urban and rural settlement.
Although the Atlantic Rainforest has been reduced and fragmented, its remnants are
important sources of heat and water vapor to the atmosphere. The present study aimed
to characterize and to analyze the temporal dynamics of precipitation and evapotrans‐
piration in the Atlantic Rainforest remnants in São Paulo state, southeastern Brazil, for
the period from January 2000 to December 2010. To achieve this, global precipitation
and evapotranspiration data from TRMM satellite and MOD16 algorithm as well as
forest  remnant  maps  produced  by  SOS  Mata  Atlântica  Foundation  and  Brazilian
National Institute for Space Research (INPE) were used. Results found in this study
demonstrated that  the use of  remote sensing was an important  tool  for  analyzing
hydrological variables in Atlantic Rainforest remnants, which can contribute to better
understand  the  interaction  between  tropical  forests  and  the  atmosphere,  and  for
generating input data necessary for surface models coupled to atmospheric general
circulation models.

Keywords: hydrological variables, Atlantic Rainforest, South America, TRMM,
MOD16, remote sensing
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1. Introduction

The Atlantic Rainforest stretches across Brazil, Argentina, and Paraguay, and is considered
the  second  largest  tropical  forest  in  the  American  continent  [1].  In  Brazil,  the  Atlantic
Rainforest covers 17 states, from Ceará to Rio Grande do Sul, and is located along coastal and
inland regions,  over  mountains  and plateaus  [2].  The  great  longitudinal  and latitudinal
extension  and,  consequently,  the  wide  variability  in  rainfall  and  temperature  provide,
combined  with  altitude  gradient  and  ancient  vegetation  formations,  a  high  degree  of
biodiversity and endemism [3].

The Atlantic Rainforest was heavily devastated since the beginning of Brazilian coloniza‐
tion, mainly due to wood extraction and rural and urban settlement. Thus, from the original
forest cover, only isolated remnants with variable sizes in different successional stages were
left [4]. Recent studies show that only 8.5% of the original Atlantic Rainforest, estimated in
1.3 million km2, still exists [5]. The state of São Paulo (henceforth referred to as SP), despite
its high levels of agricultural and urban development, presents the largest remnants of At‐
lantic Rainforest in the country. Estimates show that 13.9% of the original Atlantic Rainfor‐
est still exists in SP [6].

Although Atlantic Rainforest has been reduced and fragmented, its remnants are an impor‐
tant source of heat and water vapor to the atmosphere. This is because latent heat released
as evapotranspiration influences the atmospheric circulation in the tropics and the water va‐
por contributes to the regional precipitation regime [7]. In this context, knowing the annual
and interannual variability of precipitation and evaporative processes in tropical biomes is
necessary for a better understanding of the energy and water partitioning between surface
and atmosphere, which allows for a better parameterization of the boundary layer processes
used in climate and weather forecasting models [8, 9].

Usually, precipitation and evapotranspiration are measured by instruments equipped in
conventional meteorological stations; however, these measurements are expensive and do not
represent well the spatial variability of these processes [10]. Hence, the use of remote sensing
techniques becomes a methodological alternative since it enables to obtain different biophys‐
ical parameters at the Earth’s surface with high temporal and spatial coverage. The Tropical
Rainfall Measuring Mission (TRMM) [11] and the MOD16 algorithm [12, 13], developed,
respectively, to estimate global surface precipitation and evapotranspiration, have been widely
used by the scientific community in large‐scale hydrological studies [14].

The purpose of this study was to characterize and analyze, based on both TRMM and MOD16
imagery, the temporal dynamics of precipitation and evapotranspiration in the Atlantic
Rainforest remnants of SP, southeastern Brazil, during a 10‐year period (January 2000 to
December 2010). We have implemented a wavelet transform to evaluate the temporal varia‐
bility of these parameters. Wavelet analysis is becoming a common tool for researches
involving remote sensing and land‐atmosphere interactions. It provides an efficient method
for extracting relevant information from large datasets and has been applied to a wide range
of variables and different types of ecosystems [15].
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2. Materials and methods

2.1. Study area

The study area is located in SP, southeastern region of Brazil (Figure 1). The Atlantic Rainforest
remnants are mainly located in the slopes of Serra do Mar (1), Bocaina (2), and Mantiqueira
(3) mountains and Ribeira (4) and Paraíba (5) valleys, where the natural vegetation cover was
less affected due to the difficulty of agricultural mechanization [16]. The main formations of
Atlantic Rainforest observed in SP are dense ombrophilous Forest, mixed ombrophilous forest
and seasonal semideciduous forest [6].

Figure 1. Map showing the location of São Paulo State, Brazil. The color composite was obtained from MODIS/Aqua
images of June 23, 2006. The green areas represent dense vegetation, while the beige, magenta, and black areas repre‐
sent, respectively, agriculture (mostly pasture and sugarcane plantations), bare soil (or urban areas), and water bodies.
The numbers 1–5 show, respectively, the location of the slopes of Serra do Mar, Bocaina and Mantiqueira mountains
and Ribeira and Paraíba valleys.

2.2. TRMM data

The TRMM satellite was designed from a cooperative program between National Aeronautics
and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Its main
goal is to monitor the distribution of precipitation in tropical and subtropical regions [11]. The
satellite was launched in 1997 and has three main sensors onboard for studying precipitation:
(i) precipitation radar (PR), (ii) microwave imager (TMI), and (iii) Visible and Infrared Scanner
(VIRS). PR is an active sensor, the first of its kind in orbit, presenting as the most important
characteristic for studying precipitation providing a three‐dimensional view of the structure
of precipitation [17]. TMI is a passive microwave radiometer operating in five frequencies that
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provide information about the integrated content of the precipitation column, intensity and
type of precipitation. The VIRS sensor, derived from the AVHRR/NOAA sensor, has five
spectral bands in visible and infrared regions performing observations of clouds, such as cover,
type, and top temperature [18].

For this study, monthly precipitation data derived from TRMM (3B43 product) version 7
(v7) were used, covering the period from January 2000 to December 2010. The 3B43 prod‐
uct is calculated using data from multiple satellites, in addition to TRMM, as well as me‐
teorological stations data from the Global Precipitation Climatological Center (GPCC) and
the Climate Assessment and Monitoring System (CAMS) [19]. 3B43 imagery were ac‐
quired from the electronic address (http://gdata1.sci.gsfc.nasa.gov/daac‐bin/G3/gui.cgi?in‐
stance_id=TRMM_Monthly), presenting spatial resolution of ~30 km in mm month−1.
Images were processed in ENVI version 4.5, where the steps of reprojecting, resampling
of pixels to 1 km (same spatial resolution of MOD16 data) using nearest neighbor meth‐
od, and clipping to Atlantic Rainforest remnants in SP were performed.

2.3. MOD16 data

The MOD16 algorithm [12, 13] was developed in the context of the Earth Observing System/
NASA (EOS/NASA) program, aiming to estimate global evapotranspiration using data from
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor (Terra and Aqua) and
meteorological data from Global Modeling and Assimilation Office (GMAO). In general terms,
MOD16 is a revision of the algorithm proposed by [20], who adapted the Penman‐Monteith
equation (Eq. (1)) to be used with remote sensing data:
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where λE is the latent heat flux (W m−2) and λ represents the latent heat of evaporation (J kg−1),
s = d(esat)/dT is the slope of the curve which relates saturated pressure of water (esat) and
temperature (Pa K−1), A is the energy available at surface (W m−2), ρ represents air density (kg m
−3), Cp is the specific heat of air (J kg−1 K−1), e is the real pressure of water vapor (Pa), rs is the
surface resistance, ra is the aerodynamic resistance (s m−1), and γ represents the psychrometric
constant (66 Pa K−1).

MODIS input data required for MOD16 algorithm have spatial resolution between 500 m and
1 km, and include global products of land use and land cover (MOD12Q1), leaf area index
(LAI) and photosynthetically active radiation (PAR‐MOD15A2), and albedo (MCD43B2).
Regarding the meteorological parameters required for the algorithm, daily reanalysis data of
GMAO referring to incident solar radiation, air temperature, and water vapor pressure, with
spatial resolution of 1.00° × 1.25°, are used [13, 21]. In summary, MOD16 data have a spatial
resolution of 1 km and covers ~109 million km2 of vegetated global areas. Among the products
generated, we highlight the potential and actual evapotranspiration and potential and actual
latent heat flux products, in intervals of eight (MOD16A2) and 30 days (MOD16A3) [22].
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MOD16 data were acquired from the Numerical Terradynamic Simulation Group/The
University of Montana repository (http://www.ntsg.umt.edu/project/mod16). Tiles H13V10
and H13V11, corresponding to the monthly real evapotranspiration product, in mm month−1,
were selected for the period between January 2000 and December 2010. As MOD16 data are
available in sinusoidal projection, images were initially reprojected to geographic coordinates
with datum WGS 84 and converted to GeoTIFF format using the MODIS Reprojection Tool
(MRT). Then, a number of steps were undertaken using ENVI 4.5. These steps included
clipping of the study area, multiplication by scale factors, and application of the land‐water
and urban areas mask over the datasets.

2.4. Atlantic rainforest remnants

Since the 1980s, the SOS Mata Atlântica Foundation, jointly with the National Institute for
Space Research (INPE), is regularly mapping forest cover in the Atlantic Rainforest biome.
These institutions use remote sensing imagery to produce the “Atlas of Forest Remnants of
Atlantic Rainforest.” Resulting maps enable us to determine the spatial distribution of forest
remnants and ecosystems associated to Atlantic Rainforest, keep track of changes in vegetation
cover, and generate permanently improved and updated information of this biome [23, 24].

The spatial distribution of the forest remnants was obtained from the database provided by
[5]. This database was used to update the period corresponding to 2011–2012, that is, to up‐
date changes occurred in the polygons previously classified as forest fragments (forest rem‐
nants, mangrove, or restinga) in previous versions of the “Atlas.” To this end, images of the
LISS III/RESOURCESAT‐1 orbital sensor corresponding to the second semester of 2012 were
used. Vector files of the forest fragments polygons were acquired from the electronic ad‐
dress http://mapas.sosma.org.br/ and edited in ARCGIS version 9.3. The editing process
consisted in selecting polygons of forest remnants with area equal or greater than 100 ha.
Selecting only ≥100 ha polygons intended to create a spatial homogeneity of the analyzed
areas. It should be noted that the study comprehends the period between 2000 and 2010 and
it is understood that the forest remnants mapped by [5], referring to the update of 2011–
2012, are representative of the period analyzed.

2.5. Wavelet analysis

Wavelet analysis has become a widely used method to study variations of energy in environ‐
mental time series [25, 26]. The decomposition of a time series in the time‐frequency space
allows the determination of dominant modes of variability and its variation modes in time [27].
Time series for TRMM and MOD16 were analyzed with continuous wavelet transform using
the algorithm developed by [28]. Generally, continuous wavelet transform is used to visualize,
in a three‐dimensional diagram, the relationship between components of different frequencies
according to the time scale of the series studied [29]. Several functions are used to generate
wavelets; in this study, the Morlet complex function was used, which is composed of a plane
wave modulated by a Gaussian envelope, as shown in Eq. (2):
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where η is the dimensionless time parameter, and ω0 represents the dimensionless frequency.
Here, it is important to point out that Torrence and Compo algorithm was compiled in
MATLAB version 7.9.0 and that the analysis was performed exclusively for forest remnants of
Atlantic Rainforest. Therefore, values used to generate wavelets referred to the monthly
average precipitation (TRMM) and evapotranspiration (MOD16) in the analyzed forest
remnants.

3. Results and discussion

3.1. Precipitation and evapotranspiration in São Paulo State between 2000 and 2010

Figure 2 shows the spatial distribution of monthly average precipitation (January to De‐
cember) in SP between 2000 and 2010 obtained from TRMM satellite data.

Figure 2. Spatial distribution of monthly average precipitation (mm month−1) in SP for the period between 2000 and
2010.

Generally, it is noted that images from January to March and from October to December
show higher precipitation as compared to April to September. This reflects the well‐defined
rainfall regime in SP: the rainy season (October to March) and the dry season (April to Sep‐
tember) [30]. It is possible to note that in most of the year highest values of precipitation
are located in the Coastal Plain and Serra do Mar regions. This dynamic is associated to
frontal systems (cold fronts) and the South Atlantic Convergence Zone (SACZ), which oc‐
cur during the year in SP and act mainly in the areas near the coast, as well as the fact that
the Serra do Mar conditions the formation of orographic rainfall through the condensation
of humid winds from the ocean [31]. In contrast, lower values of precipitation are observed
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over the year in the Western Plateau region, where organized local convection is the main
source of rainfall [32].

Figure 3 shows the monthly precipitation in SP between 2000 and 2010. Monthly precipitation
ranged between 4.3 (August 2004) and 386.9 mm month−1 (January 2003), which indicates an
absolute variation of 382.6 mm month−1. On average, monthly precipitation between 2000 and
2010 was 128.9 mm month−1.

Figure 3. Monthly precipitation (mm month−1) in SP between January of 2000 and December 2010. The red line repre‐
sents the moving average of the time series (period = 2).

Average monthly precipitation ranged from 35.8 to 298.5 mm month−1, where June is the driest
month and January is the wettest. This result is observed in the January and June images shown
in Figure 2. These two images differ significantly when compared to the other images,
especially the image of January, since the image of June has some resemblance to the image of
August. In June, it is possible to note that most of precipitation is lower than 48 mm month−1,
except in the Southern region, where values close to 76 mm month−1 were found. Regarding
to the image of January, most of precipitation is higher than 300 mm month−1, except in the
western edge of the state, where values of ~216 mm month−1 were found.

Analysis of the dry season (April to September) and the rainy season (October to March) has
revealed that the average monthly precipitation was, respectively, 64.5 and 193.2 mm month−1.
Therefore, average month precipitation in the rainy season was ~200% higher than the
observed average in the dry season. Annual precipitation in São Paulo State ranged between
1403.5 and 2029.5 mm year−1. In this sense, 2002 was the least rainy year, while 2009 was the
most rainy year. Average annual precipitation was 1546.5 mm year−1, with ~25% of that
occurring in the months corresponding to the dry season and ~75% of the average annual
precipitation in the months corresponding to the rainy season. Monthly precipitation in 2002
ranged between 10.4 (June) and 267.8 mm month−1 (January), while in 2009 monthly precipi‐
tation ranged from 62.4 (June) to 314.7 mm month−1 (January).

It is important to note that TRMM satellite estimates were not validated in this study. In this
context, researches present in literature suggest relative errors ranging from ~5 [33] to ~25%
[34]. Still, it is noted that the results regarding the precipitation regime in SP are consistent
with several observation meteorological studies conducted in the state, such as [35, 36].
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Figure 4 shows the spatial distribution of monthly average actual evapotranspiration (Janu‐
ary to December) in São Paulo State between 2000 and 2010, derived from MOD16 algo‐
rithm.

Figure 4. Spatial distribution of monthly average actual evapotranspiration (mm month−1) in SP corresponding to the
period between 2000 and 2010.

Visual inspection of Figure 4 reveals a spatial and temporal pattern for evapotranspiration
similar to the one found in precipitation (Figure 2). However, evapotranspiration images
provide a better perception of subtle changes along the state. Generally, images corresponding
to the rainy season have higher values for evapotranspiration when compared to images of
the dry season. Evaporation depends on variation in solar radiation, local atmospheric
circulation process, which regulates the precipitation system and air and soil moisture
conditions, and vegetation conditions, which show considerable changes following the rainy
or dry season [37]. Among these conditions, solar radiation stands out, whose incident amount
depends, among other factors, on the season [38]. Therefore, this pattern is expected because
highest incidence of solar radiation occurs during the rainy season [39]. It is also worth
mentioning that throughout the year highest values of evapotranspiration are located in the
southern and eastern SP, while lowest values are situated in the northern and western regions
of the state.

Figure 5 shows monthly average actual evapotranspiration in SP between 2000 and 2010.
Monthly evapotranspiration varied between 26.1 and 116.8 mm month−1, representing an
absolute variation of 90.7 mm month−1. Accordingly, lowest monthly value was found in July
2000 and the highest in January 2003. Considering the period between 2000 and 2010, monthly
evapotranspiration corresponded, on average, to 68.2 mm month−1.
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Figure 5. Monthly actual evapotranspiration (mm month−1) in SP between January of 2000 and December 2010. The red
line represents the moving average of the time series (period = 2).

The months of August and January presented, respectively, lowest and highest monthly
average evapotranspiration (values of 36.6 and 107.1 mm month−1). Relating precipitation and
evapotranspiration, it denotes that August had the second lowest monthly average precipita‐
tion, while January had the highest monthly average precipitation.

Monthly average evapotranspiration in the dry season was 48.0 mm month−1, while in the
rainy season it corresponded to 88.3 mm month−1, which shows an increase of ~84% in
evapotranspiration during the wetter period of the year in São Paulo State. Annual evapo‐
traspiration values ranged between 765.7 and 942.0 mm year−1, with 2003 and 2009 present‐
ing, respectively, lowest and highest estimates. In 2003, monthly evapotranspiration ranged
from 32.7 (August) to 116.8 mm month−1 (January), while in 2009 monthly evapotranspira‐
tion ranged between 44.6 (June) and 110.4 mm month−1 (December). Regarding yearly aver‐
age evapotranspiration, the estimate found for the period between 2000 and 2010 was
817.9 mm year−1. On average, for the period between 2000 and 2010, evapotranspiration ac‐
counted for ~53% of precipitation in São Paulo State.

It should be noted that MOD16 algorithm estimates were not validated for this study. Ideally,
validation process should be performed using surface measurements throughout SP in order
to identify biases in the estimates found according to the conditions studied. However, there
is a lack of such information for the study area, both the spatial and temporal perspective,
which prevents this type of analysis. For comparison, [22], in a validation study for the MOD16
algorithm, found relative errors of 18–22% in tropical forest areas, 20% in seasonal flooding
areas and 33% in agricultural areas. Finally, it should be noted that results found about the
evapotranspiration regime in SP agree with the results from a modeling study using the Simple
Biosphere Model (SiB2) performed by [40].

3.2. Precipitation and evapotranspiration in Atlantic Rainforest remnants between 2000
and 2010

Figure 6 shows the remnants of the Atlantic Rainforest in São Paulo State with area ≥ 100 ha,
and the overlapping of the remnants mapped in São José do Rio Preto region (northwestern
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SP) with a MODIS/Terra sensor image from June 27, 2010. It is possible to note that most of the
remnants are located in South and East portions of the State, in contrast to the northern and
western regions [16]. Yet, as observed in the highlighted image, polygons mapped by [5] are
properly adjusted to MODIS images, which are the basis of the MOD16 algorithm used in this
study.

Figure 6. Atlantic Rainforest remnants in São Paulo State with an area equal or greater than 100 ha. Highlighted image
shows the overlapping between remnants polygons mapped in São José do Rio Preto region and a MODIS/Terra sensor
image (R1G2B1) from June 27, 2010.

For the period of 2011–2012, 25,554 polygons were mapped in São Paulo State, totalizing an
area of ~2,421,538 ha. After the selection of the polygons with area ≥ 100 ha, 2054 were found,
representing an area of ~1,914,331 ha. In here, it is important to mention that analysis related
to precipitation and evapotranspiration were realized only for Atlantic Rainforest remnants
with area equal to or greater than 100 ha.

Figure 7 shows precipitation (monthly and monthly average) in Atlantic Rainforest rem‐
nants between 2000 and 2010. It is possible to note a strong seasonality in Atlantic Rainfor‐
est remnants precipitation, similar behavior found in previous analysis for São Paulo State
(Section 3.1). Monthly precipitation ranged between 11.7 and 460.1 mm month−1, values
found, respectively, in July 2008 and January 2010. Considering the entire period (2000–
2010) monthly average precipitation was 114.7 mm month−1. [41] observed, in Atlantic
Rainforest areas in São Paulo State, monthly precipitation ranging between 1.5 and
347.3 mm month−1. Moreover, during the period analyzed, monthly precipitation in Atlan‐
tic Rainforest remnants was, on average, ~12% higher than that estimated for SP.

Monthly average precipitation ranged from 49.6 (June) to 309.5 mm month−1 (January). In this
sense, Donato et al. [41] estimated, for Atlantic Rainforest areas in São Paulo State, monthly
average precipitation between 33.8 (August) and 272.0 mm month−1 (January), similar to those
obtained in this study.

During the dry season, monthly average precipitation in remnants was 85.7 mm month−1, while
in the rainy season was 203.8 mm month−1. Therefore, monthly average precipitation in the
Atlantic Rainforest remnants was ~138% higher in the rainy season. Annual precipitation
ranged from 1426.6 (2007) to 2185.4 mm year−1 (2009). Thus, annual precipitation showed an
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absolute and relative variation of 758.8 mm year−1 and ~53%, respectively. In 2007, monthly
precipitation fluctuated between 18.7 (June) and 268.2 mm month−1 (January), while in 2009 it
ranged from 63.3 (June) to 298.6 mm month−1 (January). Annual average precipitation in
Atlantic Rainforest remnants was 1737.0 mm year−1. In addition, ~30% of the annual average
precipitation occurred during the dry season, and ~70% was concentrated in the rainy season.
Similar studies by [41, 42] found, for Atlantic Rainforest remnants areas in SP, annual average
precipitation of 1784.0 and 1974.1 mm year−1, respectively.

Figure 7. Monthly (mm month−1) (a) and monthly average (mm month−1) (b) precipitation in Atlantic Rainforest rem-
nants of São Paulo State between January 2000 and December 2010. In (a), the red line represents the moving average
of the time series (period = 2), and in (b), vertical bars represent the standard deviation.

Figure 8 shows actual evapotranspiration (monthly and monthly average) in Atlantic Rain-
forest remnants between 2000 and 2010. It is possible to note the temporal variability of the
values found, characterizing the seasonality of this parameter and presenting well-defined dry
and rainy seasons, as mentioned in Section 3.1. Considering the period studied, monthly
evapotranspiration oscillated between 55.3 and 144.3 mm month−1. Accordingly, lowest value
was found in July 2000, while the highest in December 2002. On average, considering the period
between 2000 and 2010, monthly evapotranspiration was 104.03 mm month−1. [43], considering
an experimental microbasin located in an Atlantic Rainforest area in the municipality of Cunha,
obtained monthly evapotranspiration values oscillating between 26.5 and 142.3 mm month−1,
similar to those obtained in the present study. It is worth mentioning that, considering the
period analyzed, monthly evapotranspiration in Atlantic Rainforest remnants was, on average,
~52% higher than monthly evapotranspiration in SP.

Monthly average evapotranspiration ranged from 63.2 (June) to 139.3 mm month−1 (December).
Comparing these results with monthly average precipitation, June was the month with lowest
precipitation, while December was the third wettest month. In this context, [44], in a study
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conducted at the Serra do Mar State Park, found monthly average evapotranspiration between
35.8 (July) and 95.0 mm month−1 (January).

Figure 8. Monthly (mm month−1) (a) and monthly average (mm month−1) (b) actual evapotranspiration in Atlantic Rain‐
forest remnants of São Paulo State between January 2000 and December 2010. In (a), the red line represents the moving
average of the time series (period = 2), and in (b), vertical bars represent the standard deviation.

Monthly average evapotranspiration for the dry season was 78.6 mm month−1, while during
the rainy season was 129.5 mm month−1. Considering these results, monthly average evapo‐
transpiration in the Atlantic Rainforest remnants was ~65% higher in the rainy season when
compared to the dry season. Annual evapotranspiration ranged from 1220.4 (2000) to 1275.2
(2002) mm year−1, an absolute variation of 55 mm year−1 and relative variation of ~5%. Monthly
evapotranspiration for 2000 and 2002 ranged, respectively, from 55.3 (July) to 140.7 mm month
−1 (January), and from 62.5 (July) to 144.6 mm month−1 (December). Annual average evapo‐
transpiration was 1248.3 mm year−1, with dry and rainy season month representing, respec‐
tively, ~38 and ~62% of the total. Considering annual average, evapotranspiration represented
~72% of the precipitation in Atlantic Rainforest remnants, suggesting a low hydric production
(~28%). Usually, evapotranspiration studies in tropical forests show values ranging, on
average, from 1000 to 1400 mm year−1 [45]. Regarding Atlantic Rainforest in São Paulo State,
[41] found annual average of 697.5 mm year−1 for evapotranspiration, ~44% lower than the
result found in this study.

Figure 9 shows the continuous wavelet transform power spectrum for normalized time series
of precipitation and evapotranspiration. In general, it is possible to observe that the main
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oscillation mode in precipitation and evapotranspiration of Atlantic Rainforest remnants time
series is concentrated between 8 and 16 months, showing, as previously mentioned, a strong
seasonal or intraannual behavior.

For precipitation, maximum energy peak was observed between 10 and 14 months (seasonal
mark), occurring between March 2001 and November 2009. In addition, less intense peaks of
energy are highlighted for a period of 1.5 month (January 2003 and February 2003), 1–3 months
(January 2005 to April 2005 and June 2009 to September 2009), and 5–7 months (January 2009
to December 2009), being the last period not statistically significant considering a 95%
confidence interval. These less intense peaks of energy of 1.5 month, 1–3 months, and 5–7
months are related to high precipitation episodes, mainly in January 2003 (383.2 mm month−1),
in January 2005 (370.2 mm month−1), and February, July and September 2009 (281.4, 242.5, and
223.3 mm month−1, respectively). Yet, as previously mentioned, 2009 presented the highest
values for annual precipitation. Therefore, these high values of precipitation could be related
to the occurrence of frontal systems (cold fronts), the SACZ, and South American Low Level
Jet (SALLJ). Cold fronts are very common in São Paulo State and cause intense and isolated
rainfall in different regions of the state [32]. SACZ and SALLJ exert an important control in the
frequency of extreme precipitation events in Southeastern Brazil, acting in intraseasonal and
interannual scales [35]. It is important mentioning that the El Niño event contributes to the
action of SACZ in São Paulo State, increasing the probability of intense rainfall in the state
during the years that the phenomenon occurs [46].

Figure 9. Continuous wavelet transform power spectrums for normalized time series of precipitation (a) and evapo‐
transpiration (b). U‐shaped curve represents the cone of influence, below which edge effects are important.
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Regarding evapotranspiration, the maximum peak of energy is identified in the 9–15‐month
period (seasonal mark), occurring between January 2001 and December 2009. It is possible to
observe less intense peaks of energy in the period of 5–7 months (January 2001 to March 2002,
and December 2009 to March 2010); however, they are not statistically significant. Note that
2002 and 2009 showed the highest values of annual evapotranspiration. Therefore, the action
of atmospheric systems, and their influence over meteorological variables (e.g., air tempera‐
ture, wind speed, and air and soil moisture) [47], could have provided conditions that favored
the increase of evapotranspirative processes in Atlantic Rainforest remnants considering the
intraseasonal scale between 2001/2002 and 2009/2010 periods.

4. Conclusions

Combining TRMM satellite data and MOD16 algorithm enabled mapping the spatial distri‐
bution and evaluating precipitation and evapotranspiration in São Paulo State, as well as
analyzing the temporal dynamics of these variables in Atlantic Rainforest remnants for the
period between 2000 and 2010. Generally, the precipitation and evapotranspiration trends
(considering both São Paulo State and forest remnants) revealed a strong seasonal pattern, with
highest values concentrated in the rainy season (October to March) and lowest values in the
dry season (April to September).

Regarding to São Paulo State, highest values of precipitation and evapotranspiration were
found in southern and eastern regions, while lowest values were located in the northern and
western portions of the state. The time series analysis showed that monthly averages for
precipitation and evapotranspiration were, respectively, ~200 and ~84% higher during the
rainy season when compared to the dry season. Considering annual averages, evapotranspi‐
ration corresponded to ~53% of precipitation in São Paulo State.

In regard to Atlantic Rainforest remnants, time series analysis showed that during the
rainy season precipitation and evapotranspiration were, respectively, ~138 and ~65% higher
than those observed during the dry season. In terms of annual averages, evapotranspira‐
tion accounted for ~72% of precipitation, indicating a low hydric production (~28%). Con‐
sidering the entire period, monthly averages of precipitation and evapotranspiration were,
respectively, ~12 and ~52% higher than the monthly averages for São Paulo State, which
demonstrates the contribution of these remnants to the regional hydrologic regime. The
higher amounts of precipitation are observed in the coastal region where most of the rem‐
nants are located and maybe there is an artifact, however if we analyze the evapotranspi‐
ration maps it is possible to note that the evapotranspiration is really low in the western
part of Sao Paulo state due the presence of large areas of agriculture and pasture and a
reduced number of forest remnants. Analysis of wavelet transform for precipitation and
evapotranspiration time series in Atlantic Forest remnants showed that the main oscilla‐
tion mode is concentrated between 8 and 16 months, revealing a seasonal or intra‐annual
behavior. It is important to note that the wavelets analysis allowed to conduct a more com‐
prehensive evaluation of the behavior of precipitation and evapotranspiration through

Tropical Forests - The Challenges of Maintaining Ecosystem Services while Managing the Landscape106



time. It can be a useful tool to verify trends of temporal shifts in environmental parameters
[48–53], which in its turn can affect the ecosystem services delivered by tropical forest rem‐
nants. In this sense, just to point out, the trends of temporal shifts in precipitation and
evapotranspiration observed in our study were related, in general, to the SACZ, SALLJ,
and El Niño.

Results found in this study demonstrated that the use of remote sensing was an important tool
for analyzing hydrological variables in Atlantic Rainforest remnants, which can contribute to
better understanding the interaction between tropical forests and the atmosphere, and for
generating input data necessary for surface models coupled to atmospheric general circulation
models. Accordingly, future studies should be performed to (i) validate MOD16 algorithm for
Atlantic Rainforest conditions, (ii) analyze potential artifacts related to the spatial distribution
of the land cover and environmental parameters, (iii) identify other phenomena that could be
related to intraseasonal and interannual variations in precipitation and evapotranspiration
occurred in Atlantic Rainforest remnants, (iv) analyze precipitation and evapotranspiration in
specific forest formations of Atlantic Rainforest (e.g., dense ombrophylous forest, mixed
ombrophylous forest, and seasonal semideciduous forest), (v) evaluate the differences of
precipitation and evapotranspiration between forest remnants and different land use types
(e.g., pasture, agriculture, urban areas, etc.), which can play an important role to understand
more specifically what is the impact of land use changes in ecosystem services in tropical
regions, and (vi) analyze the relationship between precipitation and evapotranspiration in
Atlantic Rainforest remnants using other biophysical variables, such as surface albedo and
vegetation indices.
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