12 research outputs found

    Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data

    Get PDF
    Background: A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species. Results: Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA. Conclusions: The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.Ministerio de Economía y Competitividad | Ref. RZ2012–00011-C02–00Ministerio de Ciencia e Innovación | Ref. JCI-2011-1089

    Nutrient supply does play a role on the structure of marine picophytoplankton communities

    Get PDF
    Conference communicationThe Margalef´s mandala (1978) is a simplified bottom-up control model that explains how mixing and nutrient concentration determine the composition of marine phytoplankton communities. Due to the difficulties of measuring turbulence in the field, previous attempts to verify this model have applied different proxies for nutrient supply, and very often used interchangeably the terms mixing and stratification. Moreover, because the mandala was conceived before the discovery of smaller phytoplankton groups (picoplankton <2 µm), it describes only the succession of vegetative phases of microplankton. In order to test the applicability of the classical mandala to picoplankton groups, we used a multidisciplinary approach including specifically designed field observations supported by remote sensing, database analyses, and modeling and laboratory chemostat experiments. Simultaneous estimates of nitrate diffusive fluxes, derived from microturbulence observations, and picoplankton abundance collected in more than 200 stations, spanning widely different hydrographic regimes, showed that the contribution of eukaryotes to picoautotrophic biomass increases with nutrient supply, whereas that of picocyanobacteria shows the opposite trend. These findings were supported by laboratory and modeling chemostat experiments that reproduced the competitive dynamics between picoeukaryote sand picocyanobacteria as a function of changing nutrient supply. Our results indicate that nutrient supply controls the distribution of picoplankton functional groups in the ocean, further supporting the model proposed by Margalef.Spanish Governmen

    Dissecting tumor anatomy: Intratumoral cell heterogeneity defines response to target-directed therapies

    No full text
    Resumen del trabajo presentado al XXXIV Congreso de la Sociedad Española de Bioquímica y Biología Molecular, celebrado en Barcelona del 5 al 8 de septiembre de 2011.-- et al.Accumulated evidences indicate that most solid tumors are not homogeneous but built of cancer cell populations with divers biological properties. They follow a hierarchical organization in which self-renewing cancer stem cells (CSC) are in the apex of a differentiation process within the cancerous tissue. CSC can also compose the small reservoir of drug-resistant cells responsible for tumor relapse or can give rise to metastasis. Our laboratory is exploring such heterogeneity and describing novel populations of cancer cells within colon carcinomas responsible for drugresistance, relapse or metastasis, all clinical determinants of patients' survival. Blocking signaling pathways that drive CSC distinctive properties is a new strategy being recently explored in clinical oncology by the use of novel targetdirected drugs. Wnt/β-catenin and PI3K/AKT are two of these pathways playing a central role in CSC homeostasis. We have described the function of their corresponding effectors - β-catenin and FOXO3a - cooperating in colon cancer. Their activation promotes cell scatteringand metastasis regulating a set of common target genes. Unexpectedly, the anti-tumoral AKT inhibitor API-2 promotes nuclear FOXO3a accumulation and metastasis from cells with high nuclear β-catenin. β-catenin confers resistance to FOXO3a-induced apoptosis promoted by PI3K and AKT inhibitors in patient-derived cells enriched in CSC, that is reverted by Wnt/β-catenin inhibitor XAV-939. Our findings could have a serious impact on therapy since we demonstrate that nuclear β-catenin heterogeneity compromises the response of different cancer cell populations to anti-tumoral drugs currently in clinical trials and directed against PI3K/AKT oncogenic signal.Peer Reviewe

    Epigenetic SMAD3 Repression in Tumor-Associated Fibroblasts Impairs Fibrosis and Response to the Antifibrotic Drug Nintedanib in Lung Squamous Cell Carcinoma

    No full text
    The tumor-promoting fibrotic stroma rich in tumor-associated fibroblasts (TAF) is drawing increased therapeutic attention. Intriguingly, a trial with the antifibrotic drug nintedanib in non– small cell lung cancer reported clinical benefits in adenocarcinoma (ADC) but not squamous cell carcinoma (SCC), even though the stroma is fibrotic in both histotypes. Likewise, we reported that nintedanib inhibited the tumor-promoting fibrotic phenotype of TAFs selectively in ADC. Here we show that tumor fibrosis is actually higher in ADC-TAFs than SCC-TAFs in vitro and patient samples. Mechanistically, the reduced fibrosis and nintedanib response of SCC-TAFs was associated with increased promoter methylation of the profibrotic TGFb transcription factor SMAD3 compared with ADC-TAFs, which elicited a compensatory increase in TGFb1/SMAD2 activation. Consistently, forcing global DNA demethylation of SCC-TAFs with 5-AZA rescued TGFb1/SMAD3 activation, whereas genetic downregulation of SMAD3 in ADCTAFs and control fibroblasts increased TGFb1/SMAD2 activation, and reduced their fibrotic phenotype and antitumor responses to nintedanib in vitro and in vivo. Our results also support that smoking and/or the anatomic location of SCC in the proximal airways, which are more exposed to cigarette smoke particles, may prime SCC-TAFs to stronger SMAD3 epigenetic repression, because cigarette smoke condensate selectively increased SMAD3 promoter methylation. Our results unveil that the histotype-specific regulation of tumor fibrosis in lung cancer is mediated through differential SMAD3 promoter methylation in TAFs and provide new mechanistic insights on the selective poor response of SCCTAFs to nintedanib. Moreover, our findings support that patients with ADC may be more responsive to antifibrotic drugs targeting their stromal TGFb1/SMAD3 activation. Significance: This study implicates the selective epigenetic repression of SMAD3 in SCC-TAFs in the clinical failure of nintedanib in SCC and supports that patients with ADC may benefit from antifibrotic drugs targeting stromal TGFb1/ SMAD3

    Epigenetic SMAD3 Repression in Tumor-Associated Fibroblasts Impairs Fibrosis and Response to the Antifibrotic Drug Nintedanib in Lung Squamous Cell Carcinoma

    No full text
    The tumor-promoting fibrotic stroma rich in tumor-associated fibroblasts (TAF) is drawing increased therapeutic attention. Intriguingly, a trial with the antifibrotic drug nintedanib in non– small cell lung cancer reported clinical benefits in adenocarcinoma (ADC) but not squamous cell carcinoma (SCC), even though the stroma is fibrotic in both histotypes. Likewise, we reported that nintedanib inhibited the tumor-promoting fibrotic phenotype of TAFs selectively in ADC. Here we show that tumor fibrosis is actually higher in ADC-TAFs than SCC-TAFs in vitro and patient samples. Mechanistically, the reduced fibrosis and nintedanib response of SCC-TAFs was associated with increased promoter methylation of the profibrotic TGFb transcription factor SMAD3 compared with ADC-TAFs, which elicited a compensatory increase in TGFb1/SMAD2 activation. Consistently, forcing global DNA demethylation of SCC-TAFs with 5-AZA rescued TGFb1/SMAD3 activation, whereas genetic downregulation of SMAD3 in ADCTAFs and control fibroblasts increased TGFb1/SMAD2 activation, and reduced their fibrotic phenotype and antitumor responses to nintedanib in vitro and in vivo. Our results also support that smoking and/or the anatomic location of SCC in the proximal airways, which are more exposed to cigarette smoke particles, may prime SCC-TAFs to stronger SMAD3 epigenetic repression, because cigarette smoke condensate selectively increased SMAD3 promoter methylation. Our results unveil that the histotype-specific regulation of tumor fibrosis in lung cancer is mediated through differential SMAD3 promoter methylation in TAFs and provide new mechanistic insights on the selective poor response of SCCTAFs to nintedanib. Moreover, our findings support that patients with ADC may be more responsive to antifibrotic drugs targeting their stromal TGFb1/SMAD3 activation. Significance: This study implicates the selective epigenetic repression of SMAD3 in SCC-TAFs in the clinical failure of nintedanib in SCC and supports that patients with ADC may benefit from antifibrotic drugs targeting stromal TGFb1/ SMAD3

    Designer matrices for intestinal stem cell and organoid culture

    No full text
    Epithelial organoids recapitulate multiple aspects of real organs, making them promising models of organ development, function and disease. However, the full potential of organoids in research and therapy has remained unrealized, owing to the poorly defined animal-derived matrices in which they are grown. Here we used modular synthetic hydrogel networks to define the key extracellular matrix (ECM) parameters that govern intestinal stem cell (ISC) expansion and organoid formation, and show that separate stages of the process require different mechanical environments and ECM components. In particular, fibronectin-based adhesion was sufficient for ISC survival and proliferation. High matrix stiffness significantly enhanced ISC expansion through a yes-associated protein 1 (YAP)-dependent mechanism. ISC differentiation and organoid formation, on the other hand, required a soft matrix and laminin-based adhesion. We used these insights to build a fully defined culture system for the expansion of mouse and human ISCs. We also produced mechanically dynamic matrices that were initially optimal for ISC expansion and subsequently permissive to differentiation and intestinal organoid formation, thus creating well-defined alternatives to animal-derived matrices for the culture of mouse and human stem-cell-derived organoids. Our approach overcomes multiple limitations of current organoid cultures and greatly expands their applicability in basic and clinical research. The principles presented here can be extended to identify designer matrices that are optimal for long-term culture of other types of stem cells and organoids
    corecore