739 research outputs found

    Preconcentration Techniques for Determination of Uranium Using the Modified Sorbents.

    Get PDF
    Práce byla zaměřena na prekoncentrační techniky pro stanovení uranu na modifikovaných sorbentech, s finálním využitím ICP-OES a ICP-MS. Stanovení uranu bylo provedeno na ICP-OES při vlnové délce 385,958 nm. Byly nastaveny optimální provozní parametry přístroje, vyšetřen vliv minerálních kyselin (HCl, HNO3), tenzidů (Septonexu, Ajatinu) a organických činidel (4-(2-pyridylazo)resorcinolu, Ammonium pyrrolidindithiokarbamidátu, 8 -hydroxychinolin-5-sulfonové kyseliny a 1,2-dihydroxyantrachinonu-3-sulfonové kyseliny). Pro analýzu vzorků pomocí ICP-MS byl vybrán izotop 238U, jako interní standard byl použit 209Bi (200 ?g•l-1). Pro prekoncentraci uranu (VI) byly použity modifikované silikagely (Silikage-C18, C8 a Fenyl) a dva typy Amberlitů XAD 4 a XAD 16. Komerčně vyráběné Amberlity byly upraveny sušením při 100°C (24 hod), následně pomlety, a z pomletého sorbentu byla vybrána frakce 0,32-0,63 ?m. Takto získaný sorbent byl aktivován v metanolu. Kondicionace Amberlitů provedena deionizovanou vodou a Septonexem (5•10-3 mol•l-1) při pH 8. Samotná sorpce uranu (VI) probíhala optimálně při pH 8 v přítomnosti 4-(2-pyridylazo)resorcinolu nebo ammonium pyrolidindithiokarbamidátu u Amberlitu XAD 16 ještě 1,2-dihydroxyantrachinon-3-sulfonové kyseliny, vše v optimálním pětinásobném hmotnostním nadbytku ke koncentraci uranu (VI). Pro opětnou eluci byla optimální směs acetonu s 1 mol•l-1 HNO3 v poměru 1:1. Aceton byl posléze z eluátu odpařen a finální analýza provedena pomocí ICP-OES. Při prekoncentraci uranu (VI) s využitím sorbentu Silikagel-C18 byla kondicionace provedena etanolem, deionizovanou vodou a Zephyraminu (5•10-4 mol•l-1) při pH 8. Pro Silikagel-C8 a Silikagel-Fenyl byla použita stejná kondicionace pouze bez Zephyraminu. Při použití sorbentu Silikagel-C18 poskytovala nejvyšší sorpční účinnost 1,2-dihydroxyantrachinon-3-sulfonová kyselina, při použití Silikagelu-C8 ammonium pyrrolidindithiokarbamidát a pro Silikagel-Fenyl 8-hydroxychinolin-5-sulfonová kyselina, vše optimálně v pětinásobku hmotnostní koncentrace uranu (VI) při pH 8. Optimální eluce provedena směsí acetonu a etanolu v poměru 1:1 v přítomnosti 1 mol•l-1 HCl, u všech modifikovaných silikagelů. Aceton a etanol byl z eluátu odstraněn odpařením a finální analýza uranu provedena pomocí ICP-MS. Nejlépe se osvědčil sorbent silikagel-C18 v přítomnosti Zephyraminu a 1,2-dihydroxyantrachinon-3-sulfonové kyseliny. Tato sorpce probíhala také v přítomnosti 20 ?g•l-1 mikroelementů (Be, V, Co, Ni, Y, Pb, Th, Cd) a v přítomnosti definovaného nadbytku K, Na, Ca, Mg, Al a Fe. Přímá analýza uranu byla provedena u vzorku vody z řeky Ploučnice a z Turonské zvodně s obsahem uranu 3,5 a 19,3 ?g•l-1. Ostatní studované vody vyžadovaly prekoncentraci uranu (VI) na sorbentu Silikagel-C18 v přítomnosti 1,2-dihydroxyantrachinon-3-sulfonové kyseliny a Zephyraminu. Výsledky analýzy dávaly statisticky uspokojivé výsledky, které potvrdilo i použití standardního přídavku 20 ?g•l-1.The work has been focused on the preconcentration techniques for determination of uranium on the modified sorbent, with the final use of ICP-OES and ICP-MS. First ICP-OES at a wavelength of 385.958 nm was used for determination of uranium. Parameters were optimized and the effect of mineral acids (HCl, HNO3), tensides (Septonex, Ajatin) and organic reagents like (4-(2-pyridylazo)resorcinol, ammonium pyrrolidinedithiocarbamate, 8-hydroxyquinoline-5-sulphonic acid and 1,2-dihydroxyanthraquinone-3-sulphonic acid) was observed. For ICP-MS an isotope 238U was chosen. As an internal standard 209Bi (200 ?g•l-1) was used. Modified silica gel was used (Silicagel tethered with C18, C8 alkyls and phenyl) and two types of Amberlite XAD 4 and XAD 16 for the preconcentration of uranium (VI). Commercially produced Amberlite was modified as follows: Drying at 100 °C (24 hours), milled, minced sorbent was selected and fractionated to particles size ranging from 0.32 to 0.63 ?m and finally activated in methanol. The deionised water and Septonex (5•10-3 mol•l-1) at pH 8 were used for Amberlite conditioning. The optimal sorption of uranium (VI) proceeded at pH 8 in the presence of 4-(2-pyridylazo)resorcinol or ammonium pyrrolidinedithiocarbamate with Amberlite XAD-16 moreover with 1,2-dihydroxyanthraquinone-3-sulphonic acid. All organic reagents have mass concentration five time larger than uranium . For the elution of uranium the mixture of 1 mol•l-1 HNO3 with acetone (ratio of 1:1) was used. Acetone was evaporated and the final analysis performed using ICP-OES. The preconcentration of uranium (VI) using Silicagel-C18 conditioning was performed with ethanol, deionised water and Zephyraminu (5•10-4 mol•l-1) at pH 8. For the Silica-C8 and Silicagel-Phenyl the same conditioning procedure without zephyramin was used. Silica-C18 had the highest sorption efficiency with 1,2-dihydroxyanthraquinone-3-sulphonic acid, Silicagel-C8 with ammonium pyrrolidinedithiocarbamate and Silicagel-Phenyl with 8-hydroxyquinoline-5-sulfonic acid, all organic reagents have mass concentration five time larger than uranium concentration. As an optimal elution mixture acetone and ethanol (ratio of 1:1) in the presence of 1 mol•l-1 HCl was evaluated. Acetone and ethanol was evaporated and the final analysis was performed using ICP-MS. Silicagel-C18 was evaluate as the most effective in the presence of zephyramin and 1,2-dihydroxyanthraquinone-3-sulphonic acid. Sorption was also tested in the presence of 20 ?g•l-1 microelements (Be, V, Co, Ni, Y, Pb, Th, Cd) and in the presence of a defined concentrations of K, Na, Ca, Mg, Al and Fe. Direct analysis of uranium was carried out on samples of water from the river Ploucnice and Turonian aquifers containing uranium, 3,5 and 19,3 ?g•l-1. Different type of water required preconcentration of uranium (VI) on Silica-C18 in the presence of 1,2-dihydroxyanthraquinone-3-sulphonic acid and zephyramin. The analysis results gave statistically satisfactory results, which were confirmed using standard addition of 20 ?g•l-1.

    The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis

    Get PDF
    Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.</p

    The bloodstream form of Trypanosoma brucei displays non-canonical gluconeogenesis

    Get PDF
    Trypanosoma brucei is a causative agent of the Human and Animal African Trypanosomiases. The mammalian stage parasites infect various tissues and organs including the bloodstream, central nervous system, skin, adipose tissue and lungs. They rely on ATP produced in glycolysis, consuming large amounts of glucose, which is readily available in the mammalian host. In addition to glucose, glycerol can also be used as a source of carbon and ATP and as a substrate for gluconeogenesis. However, the physiological relevance of glycerol-fed gluconeogenesis for the mammalian-infective life cycle forms remains elusive. To demonstrate its (in)dispensability, first we must identify the enzyme(s) of the pathway. Loss of the canonical gluconeogenic enzyme, fructose-1,6-bisphosphatase, does not abolish the process hence at least one other enzyme must participate in gluconeogenesis in trypanosomes. Using a combination of CRISPR/Cas9 gene editing and RNA interference, we generated mutants for four enzymes potentially capable of contributing to gluconeogenesis: fructose-1,6-bisphoshatase, sedoheptulose-1,7-bisphosphatase, phosphofructokinase and transaldolase, alone or in various combinations. Metabolomic analyses revealed that flux through gluconeogenesis was maintained irrespective of which of these genes were lost. Our data render unlikely a previously hypothesised role of a reverse phosphofructokinase reaction in gluconeogenesis and preclude the participation of a novel biochemical pathway involving transaldolase in the process. The sustained metabolic flux in gluconeogenesis in our mutants, including a triple-null strain, indicates the presence of a unique enzyme participating in gluconeogenesis. Additionally, the data provide new insights into gluconeogenesis and the pentose phosphate pathway, and improve the current understanding of carbon metabolism of the mammalian-infective stages of T. brucei.</p

    Annealing of Gadolinium-Doped Ceria (GDC) Films Produced by the Aerosol Deposition Method

    Get PDF
    Solid oxide fuel cells need a diffusion barrier layer to protect the zirconia-based electrolyte if a cobalt-containing cathode material like lanthanum strontium cobalt ferrite (LSCF) is used. This protective layer must prevent the direct contact and interdiffusion of both components while still retaining the oxygen ion transport. Gadolinium-doped ceria (GDC) meets these requirements. However, for a favorable cell performance, oxide ion conducting films that are thin yet dense are required. Films with a thickness in the sub-micrometer to micrometer range were produced by the dry room temperature spray-coating technique, aerosol deposition. Since commercially available GDC powders are usually optimized for the sintering of screen printed films or pressed bulk samples, their particle morphology is nanocrystalline with a high surface area that is not suitable for aerosol deposition. Therefore, different thermal and mechanical powder pretreatment procedures were investigated and linked to the morphology and integrity of the sprayed films. Only if a suitable pretreatment was conducted, dense and well-adhering GDC films were deposited. Otherwise, low-strength films were formed. The ionic conductivity of the resulting dense films was characterized by impedance spectroscopy between 300 °C and 1000 °C upon heating and cooling. A mild annealing occurred up to 900 °C during first heating that slightly increased the electric conductivity of GDC films formed by aerosol deposition

    Blood-Brain Barrier Transport of Transferrin Receptor-Targeted Nanoparticles

    Get PDF
    The blood–brain barrier (BBB), built by brain endothelial cells (BECs), is impermeable to biologics. Liposomes and other nanoparticles are good candidates for the delivery of biologics across the BECs, as they can encapsulate numerous molecules of interest in an omnipotent manner. The liposomes need attachment of a targeting molecule, as BECs unfortunately are virtually incapable of uptake of non-targeted liposomes from the circulation. Experiments of independent research groups have qualified antibodies targeting the transferrin receptor as superior for targeted delivery of nanoparticles to BECs. Functionalization of nanoparticles via conjugation with anti-transferrin receptor antibodies leads to nanoparticle uptake by endothelial cells of both brain capillaries and post-capillary venules. Reducing the density of transferrin receptor-targeted antibodies conjugated to liposomes limits uptake in BECs. Opposing the transport of nanoparticles conjugated to high-affine anti-transferrin receptor antibodies, lowering the affinity of the targeting antibodies or implementing monovalent antibodies increase uptake by BECs and allows for further transport across the BBB. The novel demonstration of transport of targeted liposomes in post-capillary venules from blood to the brain is interesting and clearly warrants further mechanistic pursuit. The recent evidence for passing targeted nanoparticles through the BBB shows great promise for future drug delivery of biologics to the brain

    Discontinuous Powder Aerosol Deposition : An Approach to Prepare Films Using Smallest Powder Quantities

    Get PDF
    This work shows that the powder aerosol deposition (PAD) method allows the formation of films in powder quantities of less than 60 mg, rather than the large amounts that are typically required for conventional powder aerosol deposition systems. This was achieved by changing the operation mode to a discontinuous one, resulting in operation times of several seconds. Semiconducting strontium titanate ferrate SrTi0.65Fe0.35O3−δ (STF35) was used as the powder to prove the equal behavior in terms of adhesion, film quality and electric conductivity compared to conventional powder-aerosol-deposited films

    A comparison of low temperature biology of Pieris rapae from Ontario, Canada, and Yakutia, Far Eastern Russia

    Get PDF
    Low temperatures limit the distribution and abundance of ectotherms. However, many insects can survive low temperatures by employing one of two cold tolerance strategies: freeze avoidance or freeze tolerance. Very few species can employ both strategies, but those that do provide a rare opportunity to study the mechanisms that differentiate freeze tolerance and freeze avoidance. We showed that overwintering pupae of the cabbage white butterfly Pieris rapae can be freeze tolerant or freeze avoidant. A population of P. rapae in northeastern Russia (Yakutsk) froze at c. -9.3 °C and were freeze-tolerant in 2002-2003 when overwintered outside. However, P. rapae from both Yakutsk and southern Canada (London) acclimated to milder laboratory conditions in 2014 and 2017 froze at lower temperatures (\u3c -20 °C) and were freeze-avoidant. Summer-collected P. rapae larvae (collected in Yakutsk in 2016) were partially freeze-tolerant, and decreased the temperature at which they froze in response to starvation at mild low temperatures (4 °C) and repeated partial freezing events. By comparing similarly-acclimated P. rapae pupae from both populations, we identified molecules that may facilitate low temperature tolerance, including the hemolymph ice-binding molecules and several potential low molecular weight cryoprotectants. Pieris rapae from Yakutsk exhibited high physiological plasticity, accumulating cryoprotectants and almost doubling their hemolymph osmolality when supercooled to -15 °C for two weeks, while London P. rapae population exhibited minimal plasticity. We hypothesize that physiological plasticity is an important adaptation to extreme low temperatures (i.e. in Yakutsk) and may facilitate the transition between freeze avoidance and freeze tolerance
    corecore