45 research outputs found

    Does an Apple (or Many) Each Day, Keep Mortality Away?

    Get PDF

    Bone is Not Alone: the Effects of Skeletal Muscle Dysfunction in Chronic Kidney Disease

    Get PDF
    Chronic kidney disease (CKD) is associated with a decline in muscle mass, strength, and function, collectively called "sarcopenia." Sarcopenia is associated with hospitalizations and mortality in CKD and is therefore important to understand and characterize. While the focus of skeletal health in CKD has traditionally focused on bone and mineral aberrations, it is now recognized that sarcopenia must also play a role in poor musculoskeletal health in this population. In this paper, we present an overview of skeletal muscle changes in CKD, including defects in skeletal muscle catabolism and anabolism in uremic tissue. There are many gaps in knowledge in this field that should be the focus for future research to unravel pathogenesis and therapies for musculoskeletal health in CKD

    CHRONIC KIDNEY DISEASE, MUSCLE WEAKNESS, AND MOBILITY LIMITATION

    Get PDF
    Objectives: Chronic kidney disease (CKD) is associated with increased mobility limitation. Prior research has documented that peripheral nerve abnormalities occur early in CKD and progressively worsen. Loss of balance, impaired muscle strength, and slow gait predispose older adults to falls and frailty. However, the current literature is limited by a lack of nationally representative data that includes objective measures of kidney disease and physical functioning. Thus, this research examines whether CKD is associated with muscle strength, balance, gait, and self-reported mobility limitations. Methods: Data come from the 2016 Health and Retirement Study (HRS). Estimated GFR, a measure of kidney functioning derived from creatinine levels in the blood, was used to classify CKD (i.e, eGFR<45 or Stage 3b CKD). Logistic and linear regression models were generated to examine the association of CKD with physical functioning, net of demographic characteristics (i.e., age, sex, race, and education) and comorbidities (i.e., obesity, pain, and number of diagnosed medical conditions). Results: In unadjusted models, CKD was significantly associated (p<0.05) with more mobility limitations, slower walking speeds, stronger grip strengths, and non-participation in balance tests. After adjusting for covariates, CKD (β=-1.43, p=0.01) was negatively associated with grip strength. In sex-stratified models, CKD was associated with slower walking speeds among men, whereas CKD was associated with more mobility limitations among women. Discussion: In a nationally representative sample of older adults, CKD was associated with poorer physical functioning on multiple measures. After adjusting for demographic characteristics and comorbidities, CKD was associated with increased muscle weakness

    Diet and Diabetic Kidney Disease: Plant Versus Animal Protein

    Get PDF
    PURPOSE OF REVIEW: The goal of this review is to present an overview of the evidence on the effectiveness of plant-based diets in delaying progression of diabetic kidney disease (DKD). RECENT FINDINGS: The ideal quantity of dietary protein has been a controversial topic for patients with DKD. Smaller studies have focused on protein source, plant versus animal, for preventing progression. Limited evidence suggests that dietary patterns that focus on plant-based foods, those that are lower in processed foods, or those that are lower in advanced glycation end products (AGE) may be useful in prevention of DKD progression. Increasing plant-based foods, incorporating diet patterns that limit processed foods, or potentially lowering AGE contents in diets may be beneficial for dietary management of DKD. However, dietary studies specifically targeted at DKD treatment are sparse. Further, large trials powered to assess outcomes including changes in kidney function, end-stage kidney disease, and mortality are needed to provide more substantial evidence for these diets

    Effects of Excessive Dietary Phosphorus Intake on Bone Health

    Get PDF
    PURPOSE OF REVIEW: The purpose of this review is to provide an overview of dietary phosphorus, its sources, recommended intakes, and its absorption and metabolism in health and in chronic kidney disease and to discuss recent findings in this area with a focus on the effects of inorganic phosphate additives in bone health. RECENT FINDINGS: Recent findings show that increasing dietary phosphorus through inorganic phosphate additives has detrimental effects on bone and mineral metabolism in humans and animals. There is new data supporting an educational intervention to limit phosphate additives in patients with chronic kidney disease to control serum phosphate. The average intake of phosphorus in the USA is well above the recommended dietary allowance. Inorganic phosphate additives, which are absorbed at a high rate, account for a substantial and likely underestimated portion of this excessive intake. These additives have negative effects on bone metabolism and present a prime opportunity to lower total phosphorus intake in the USA. Further evidence is needed to confirm whether lowering dietary phosphorus intake would have beneficial effects to improve fracture risk

    Characterizing Dysgeusia in Hemodialysis Patients

    Get PDF
    Dysgeusia (abnormal taste) is common in those with chronic kidney disease and contributes to poor nutritional intake. Previous sensory work has shown that taste improves after dialysis sessions. The goal of this pilot study was to characterize altered taste perceptions in patients on dialysis compared with healthy adults, and to evaluate relationships between serum parameters with taste perceptions. We hypothesized that patients undergoing dialysis would experience blunted taste intensities compared with controls, and that serum levels of potential tastants would be inversely related to taste perception of compounds. Using a cross-sectional design, we carried out suprathreshold sensory assessments (flavor intensity and liking) of tastants/flavors potentially influenced by kidney disease and/or the dialysis procedure. These included sodium chloride, potassium chloride, calcium chloride, sodium phosphate, phosphoric acid, urea, ferrous sulfate, and monosodium glutamate. Individuals on maintenance hemodialysis (n= 17, 10 males, range 23–87 years) were compared with controls with normal gustatory function (n=29, 13 males, range 21–61 years). Unadjusted values for intensity and liking for the solutions showed minimal differences. However, when values were adjusted for participants’ perceptions of water (as a control for taste abnormalities), intensity of monosodium glutamate, sodium chloride, and sodium phosphate solutions were more intense for patients on dialysis compared with controls. Some significant correlations were also observed between serum parameters, particularly potassium, for dialysis patients and sensory ratings. These results suggest altered taste perception in patients during dialysis warrants further study

    The effect of a diet containing 70% protein from plants on mineral metabolism and musculoskeletal health in chronic kidney disease

    Get PDF
    BACKGROUND: Chronic Kidney Disease (CKD) is associated with alterations in phosphorus excretion, and increases in fibroblast growth factor (FGF23) and parathyroid hormone (PTH). Plant protein-based phytate-bound phosphorus, is less bioavailable than that from animal sources. Our one-week study that was conducted previously showed that a nearly 100% plant protein-based diet benefits mineral metabolism in CKD; however, this diet may not be acceptable to patients. Here we hypothesize that a diet containing 70% protein from plants has similar efficacy and is tolerated by CKD patients. METHODS: Thirteen subjects with CKD 3-4 received an omnivorous diet containing 70% protein from plants for 4 weeks. The primary outcome was change in 24 h urine phosphorus. Secondary outcomes were changes in serum phosphorus, FGF23, PTH, urine sodium excretion, grip strength and fat free mass. Repeated measures analysis of variance (ANOVA) was used to test differences in parameters over the 4 weeks. RESULTS: Mean age of subjects was 54.8 years. Median eGFR was 26 (IQR 14.7) ml/min/1.73 m(2). Over the 4-week period, urine phosphorus significantly decreased by 215 ± 232 mg/day (p < 0.001). No significant changes in serum FGF23, phosphorus or PTH were noted. Urine sodium and titratable acid decreased significantly on the diet. Hand grip strength and fat-free mass did not change. There were two hyperkalemia events both 5.8 mEq/l, corrected by food substitutions. No other adverse events were observed. CONCLUSIONS: A 70% plant protein diet is safe, tolerated, and efficacious in lowering urine phosphorus excretion and may be an alternative to phosphate binders

    DIFFERENTIAL EFFECTS OF VARYING DOSES OF DIETARY NITRATE ON MUSCLE FUNCTION AND BLOOD PRESSURE IN OLDER SUBJECTS

    Get PDF
    We have recently demonstrated that dietary nitrate, a source of nitric oxide via the enterosalivary pathway, can improve muscle contractile function in healthy older men and women. Nitrate ingestion has also been shown to reduce blood pressure in older individuals. However, the optimal dose for eliciting these beneficial effects is unknown. We therefore performed a randomized, double-blind, crossover study to determine the effects of ingesting 3.3 mL/kg of beetroot juice (BRJ) containing 0, 212, or 425 µmol/kg of nitrate in six healthy older (age 69±3 y) subjects. Maximal knee extensor speed (Vmax) and power (Pmax) were measured 2 h after BRJ ingestion using isokinetic dynamometry; blood pressure was monitored periodically throughout each study. Mean arterial pressure (in mmHg) was lower (P<0.05) after the high (80±4) vs. the low (84±3) or placebo (88±2) doses. Vmax (in rad/s), however, was higher (P<0.05) after the low dose (11.7±0.8), but not the high dose (10.8±1.0), compared to the placebo (10.5±1.0). Pmax (in W/kg) also tended to be higher (P=0.11) in the low (3.9±0.5) compared to the placebo (3.7±0.5) or high (3.7±0.5) trials. Five out of six subjects achieved a higher Vmax and Pmax after the low vs. the high dose. We conclude that dietary nitrate has differential effects on muscle function and blood pressure in older individuals. A high dose of nitrate intake further lowers blood pressure but does not enhance muscle contractility as much as a lower dose. Supported by Indiana University Purdue University Indianapolis and by the NIA (R21 AG053606)

    Analytical validity of a genotyping assay for use with personalized antihypertensive and chronic kidney disease therapy

    Get PDF
    Hypertension and chronic kidney disease are inextricably linked. Hypertension is a well-recognized contributor to chronic kidney disease progression and, in turn, renal disease potentiates hypertension. A generalized approach to drug selection and dosage has not proven effective in managing these conditions, in part, because patients with heterogeneous kidney disease and hypertension etiologies are frequently grouped according to functional or severity classifications. Genetic testing may serve as an important tool in the armamentarium of clinicians who embrace precision medicine. Increasing scientific evidence has supported the utilization of genomic information to select efficacious antihypertensive therapy and understand hereditary contributors to chronic kidney disease progression. Given the wide array of antihypertensive agents available and diversity of genetic renal disease predictors, a panel-based approach to genotyping may be an efficient and economic means of establishing an individualized blood pressure response profile for patients with various forms of chronic kidney disease and hypertension. In this manuscript, we discuss the validation process of a Clinical Laboratory Improvement Amendments (CLIA)-approved genetic test to relay information on 72 genetic variants associated with kidney disease progression and hypertension therapy. These genomic-based interventions, in addition to routine clinical data, may help inform physicians to provide personalized therapy

    Klotho: An Emerging Factor With Ergogenic Potential

    Get PDF
    Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction
    corecore