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Abstract

Chronic kidney disease (CKD) is associated with a decline in muscle mass, strength, and function, 

collectively called “sarcopenia.” Sarcopenia is associated with hospitalizations and mortality in 

CKD and is therefore important to understand and characterize. While the focus of skeletal health 

in CKD has traditionally focused on bone and mineral aberrations, it is now recognized that 

sarcopenia must also play a role in poor musculoskeletal health in this population. In this paper, 

we present an overview of skeletal muscle changes in CKD, including defects in skeletal muscle 

catabolism and anabolism in uremic tissue. There are many gaps in knowledge in this field that 

should be the focus for future research to unravel pathogenesis and therapies for musculoskeletal 

health in CKD.
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Muscle and Its Effect on the Bone in CKD

Chronic Kidney Disease (CKD) is common, affecting more than 26 million Americans [1]. 

CKD has striking similarities with aging; both carry increased burden of falls, fractures, 

immobility, loss of functional independence, and frailty that leads to hospitalizations and 

mortality [2–5]. Bone changes in CKD have been described in detail by others in this series. 

Associated with these bone abnormalities is also significant skeletal muscle loss, termed 

“sarcopenia” in CKD. Sarcopenia is widely prevalent in patients undergoing dialysis and is 

associated with increased hospitalizations and mortality [6, 7•, 8, 9, 10•]. Skeletal muscle is 

attached to the bone, and forces arc transmitted from the altered muscle to the altered bone 
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in CKD. Tests of muscle function have been shown to be associated with increased fracture 

risk in dialysis patients [11], as well as in earlier stages of CKD [12]. These biomechanical 

relationships are not yet fully characterized in CKD.

Both the muscle and bone are subjected to the uremic environment in CKD, with its 

attendant inflammation, insulin resistance, metabolic acidosis, and alterations of mineral 

metabolism. Further, there are various muscle-derived factors such as insulin-like growth 

factor (IGF-1), myostatin, etc. that have effects on bone metabolism and form part of the 

bone-muscle connection in aging [13•, 14•]. Additionally, loss of skeletal muscle (due to 

CKD and its comorbid conditions) also predisposes a person to a more sedentary lifestyle 

[15] and increased risk of falls and frailty that in turn leads to more fractures, 

hospitalizations, and poorer quality of life [16], There-fore, sarcopenia in CKD is not a 

benign consequence of uremia, and skeletal muscle and bone loss are interrelated by both 

biomechanics and common exposure to uremic toxins to cause adverse outcomes in CKD. In 

this review, we present an over-view of changes in skeletal muscle in CKD (see Fig. 1) and 

their assessment. The goal of understanding sarcopenia in CKD is to eventually develop and 

test interventions for sarcopenia that improve immobility, disability, falls, fractures, and 

mortality.

Assessment of Skeletal Muscle Loss in Chronic Kidney Disease

The definition of sarcopenia is very variable in the literature. Whereas sarcopenia literally 

translates to paucity of muscle, others in the literature use the term “sarcopenia” for loss of 

muscle mass and the term “dynapenia” for loss of muscle strength. Both of these may occur 

concurrently in CKD, though these losses may occur at different rates. Strength can diminish 

at a greater rate than muscle mass [17] and vice versa [18], and the interplay between these 

two concepts is important. In CKD, the term “protein-energy wasting” (PEW) has been 

proposed to represent a combination of poor nutritional status (low serum levels of albumin, 

transthyretin, or cholesterol), decreased body mass (low or reduced body or fat mass or 

weight loss with reduced intake of protein and energy), and decreased muscle mass (muscle 

wasting or sarcopenia, reduced mid-arm muscle circumference) [19]. In this review, we will 

use the term sarcopenia to refer to changes in muscle mass, strength, or physical function.

In the aging population, operational definitions for sarcopenia include various cutoffs for 

lean muscle mass, muscle strength, and physical function (see Table 1). There are three 

major definitions currently in use: the Foundation of the NIH, the International Working 

Group on Sarcopenia. and the European Working Group [10•, 20, 21, 22•]. There are no 

comprehensive operational definitions or specific cutoffs for these measures that have been 

validated longitudinally in CKD, but declining trends in individual parameters are associated 

with poor outcomes. In a prospective study of 323 patients with mean GFR of 41.3±19.3 

ml/min per 1.73 m2 at the start, Roshanravan et al. showed that a 0.1 m/s decrease in gait 

speed is associated with a 26 % increased risk of mortality over 3 years [23•]. This is 

consistent with the data in the general population showing increased risk of mortality with 

lower values on measures of physical function (gait speed) [24]. A study in 103 incident 

peritoneal dialysis patients from China similarly demonstrated that lean body mass assessed 

by creatinine kinetics decreased over 12 months, and low lean mass predicted poor ability to 
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self-perform peritoneal dialysis and decreased patient survival [25]. A recent study from the 

UK evaluated 60 patients with CKD 4–5 and 74 prevalent patients on dialysis (28 peritoneal 

and 46 hemodialysis, with average duration on dialysis of 3 years). They assessed serial 

measures of both muscle mass (muscle cross-sectional area on CT) and physical 

performance (sit-to-stand testing) and demonstrated that 35 % of patients lost muscle mass 

in the first year [26]. A study of 128 patients with pre-dialysis CKD followed for a mean of 

33 months showed that hand-grip strength is a significant predictor of poor renal outcomes 

(pre-dialysis mortality or dialysis-dependent end-stage renal disease) [27]. Therefore, 

patients with kidney disease progressively lose skeletal muscle mass, strength, and function, 

and this loss is associated with poor outcomes.

There are multiple ways to assess each component of sarcopenia, as shown in Table 1. 

Considerations in CKD for these measures are listed. Urine creatinine excretion in 24 h 

urine collections is a measure of skeletal muscle mass in those with normal kidney function, 

but is not as useful in CKD where tubular excretion and handling of creatinine are altered or 

urinary output decreased. Patients with kidney disease have reduced values for all of these 

muscle measures, and cutoffs established in the literature for aging elders may not apply.

Pathophysiology of CKD-Associated Sarcopenia

CKD-associated sarcopenia is the result of an altered balance among catabolic and anabolic 

processes to control muscle homeostasis (Fig. 2). Controlling homeostasis is an 

extraordinarily complex process made up of hormonal, immunologic, progenitor cell 

function, mitochondrial dysfunction, inflammation, metabolic acidosis, malnutrition, 

physical inactivity, excess angiotensin II, and growth factors (insulin/insulin-like growth 

factor 1 (IGF-I), myostatin), all of which are altered to variable extents from early CKD to 

dialysis.

Skeletal Muscle Regeneration

The ability of an aging system absence of comorbidity to regenerate or maintain skeletal 

muscle mass is quite complex. In response to a stressor (i.e., muscle injury, inflammation), 

myogenic regulatory factors (MRFs) alter expression to activate satellite cells (aka. muscle 

stem cells (MuSCs)), differentiate into myotubes, and eventually form a myofiber [28]. The 

ability of MuSCs to respond in the “normal” aging system has demonstrated contrasting 

results with a reduced [29] or normal/no change [30] in number of MuSCs. Some have 

shown impaired function is associated with decreased or delayed expression of myogenic 

regulatory factors, which regulate satellite cell proliferation and differentiation. Clinically, 

there is little known regarding myogenic regulation in the CKD population. Studies in CKD 

(5/6 nephrectomy) animal model demonstrated impaired MuSC activation and reduced 

MRFs in CKD (as compared to normal aging) both at basal level and in response to injury 

[31]. To date, little is known regarding how the satellite cell functions in CKD and whether 

progression of diseases correlates with progressive changes in cell function. However, many 

of the factors known to regulate MuSCs are abnormal in CKD.
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Androgens

The ability to maintain muscle mass through protein formation may be mediated though 

testosterone. Testosterone may influence skeletal muscle formation/regeneration as it has 

been shown to increase the number of satellite cells [32•] and stimulate muscle protein 

synthesis [33]. In CKD, hypogonadism is common and may be exacerbated by other 

common CKD comorbidities (i.e., obesity, diabetes mellitus, and hypertension) [34]. Serum 

testosterone levels have been associated with reduced muscle mass and strength in CKD [34, 

35]. In randomized controlled trials in dialysis patients, nandrolone decanoate alone has 

been associated with improvements in skeletal muscle mass [36], as well as when combined 

with resistance exercise [37]. Longer term studies in CKD are needed, especially to establish 

the risk benefit ratio with androgen supplementation, given adverse events have been noted 

with testosterone replacement for other indications [38].

Vitamin D

Although vitamin D is largely thought of as a regulator of the bone, recent studies indicate 

that vitamin D may also be important in skeletal muscle maintenance and regeneration. In 

C2C12 myoblasts, treatment with 1,25 Vitamin D resulted in increased myogenesis [39], 

protein synthesis [40], and myotube diameter [41]. Conversely, vitamin D deficiency can 

induce muscle wasting acting primarily through the ubiquitin-proteasome pathway [42]. 

Overcoming vitamin D deficiency with supplementation increased muscle size and strength 

in patients on hemodialysis [43]. Further, supplementation increased mobility and function 

(i.e., the timed up and go test, gait velocity test, timed chair stand test, and stair climb test) in 

both CKD and dialysis patients [44]. Therefore, the prevalence of vitamin D deficiency in 

CKD may contribute to skeletal muscle atrophy and impaired muscle performance.

Renin-Angiotensin System

The renin-angiotensin (RAS) is upregulated in CKD [451 as well as in sarcopenia in aging 

[46]. This is important as angiotensin peptides (i.e., angiotensin I (Ang I), angiotensin II 

(Ang II)) are produced by skeletal muscle [47], but there is little to no expression of Ang I 

and II receptors in the muscle [48]. Despite the poor expression of Ang II receptors in adult 

muscle fibers, Ang II contributes directly and indirectly to muscle atrophy. Increased Ang II 

expression reduces the satellite cell pool and muscle regenerative capacity [49•] and 

upregulates caspase-3 and the ubiquitin-proteasome proteolytic pathways [50, 51]. Indirect 

effects of Ang II on skeletal muscle atrophy occur through intermediate molecules such as 

interleukin-6 that impair insulin/IGF-1 signaling and decreased Akt phosphorylation [48].

IGF/Insulin

A simplistic take upon a complex system is that, in skeletal muscle, insulin and insulin-like 

growth factor (IGF) interact with anabolic (extracellular response kinases (ERKs) and 

phosphatidylinositol 3-kinase (P13K)), and catabolic (ubiquitin-proteasome) pathways to 

regulate skeletal muscle mass and subsequent muscle performance. Activation of the ERK 

and PI3K pathways has been shown to increase proliferation [52], differentiation [53], and 

maintenance of muscle fiber growth [54]. In end-stage renal disease, patients develop 

resistance to insulin/IGF that modulates protein metabolism [55]. Protein metabolism, 
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impaired regeneration, and increased fibrosis were demonstrated in a mouse model of CKD 

[31]. Growth hormone supplementation increases serum IGF-1 levels; it is used in children 

with CKD to normalize linear growth, and it is associated with increase in muscle mass [56]. 

The muscle anabolic effect of growth hormone with IGF-1 in CKD has been shown [57], 

including the benefits on lean muscle mass increase and fat mass reduction [58]; however, 

the use of growth hormone in adults with CKD and sarcopenia has not been adequately 

studied.

Ubiquitin-Proteasome Pathway

The ubiquitin-proteasome pathway (UPP) may interact with the IGF pathway via insulin 

resistance activating the UPP to promote catabolic conditions that lead to muscle atrophy in 

CKD [59]. In the UPP target, proteins are ubiquitinated and fed into the proteasome to be 

digested and degraded. Protein degradation (i.e., muscle atrophy) occurs when activated (i.e., 

dephosphorylated) nuclear forkhead box member (FOXOs) increases the expression of 

atrogin-1 and MuRF1 E3 ligases [60]. The FOXO proteins are a subgroup of the forkhead 

family of transcription factors; the “O” distinction indicates regulation by the insulin/

PI3K/Akt pathway [61]. Of the four FOXOs (i.e., 1, 3, 4, 6), FOXO1 was identified to be the 

primary mediator of muscle wasting in an animal model of CKD [62]. The process 

degrading actomyosin complexes occurs through when caspase-3 is cleaved, then in turn is 

removed though the UPP. Caspase-3 is identified by the presence of an insoluble, 14 kDa 

remnant of actin. This biomarker has been found to increase in a number of catabolic 

conditions including osteoarthritis, burns, and in patients on dialysis [63].

Myostatin

Myostatin is a myokine that acts as a negative regulator of skeletal muscle mass through the 

upregulation of atrogenes (atrogin-1 and MuRF1) and downregulation of myogenesis genes 

(i.e., MyoD, myogenin) [64]. Myostatin levels are elevated in a number of diseases that 

demonstrate skeletal muscle wasting, including, liver disease [65], chronic obstructive 

pulmonary disease [66], and in CKD patients [67]. In a 5/6 nephrectomy mouse model of 

CKD mice, anti-myostatin treatment, a) increased body weight, muscle mass, and protein 

synthesis; b) reduced protein degradation; and c) improved satellite cell function [31]. In 

humans, drugs that bind to the myostatin receptor activin IIB have been shown to increase 

muscle mass and are currently in early-phase clinical trials in the elderly, offering a novel 

potential pharmacologic therapy to improve muscle mass [68, 69]. A trial of an anti-

myostatin peptibody in CKD is currently enrolling (NCT01958970 www.clinicaltrials.gov).

Conclusion

There appears to be disruption of skeletal muscle homeostasis in CKD, with increased 

catabolism and decreased anabolism: the sum of these phenomena is the sarcopenia that 

occurs in CKD and progresses with time. Studies to unravel the pathogenesis of sarcopenia 

in animal models of CKD and in humans are extremely important, especially if targets for 

future interventions are to be identified. Clinical biomarkers of sarcopenia, i.e., measures of 

muscle mass, strength, and function, need to be validated overtime in CKD and related to 

patient-centered outcome measures such as disability, quality of life, and mortality. 
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Ultimately, therapies that are developed will be useful and widely accepted only if they 

improve patient-centered outcomes of sarcopenia in CKD.
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Fig. 1. 
Spectrum of sarcopenia in CKD— The spectrum of C KD and associated comorbidities can 

ultimately influence mortality. This is evident by increased muscle catabolism and decreased 

regeneration that leads to reduced muscle strength, size, quality (i.e. collectively known as 

sarcopenia), and consequently limiations in function and activity. Key consequences of 

sarcopenia in patients with CKD are increased falls, fractures, immobility, disability, and 

hospitalizations. These ramifications ultimately will influence mortality
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Fig. 2. 
Skeletal muscle loss in CKD is a result of increased muscle degradation and impaired 

regeneration
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Table 1

Objective assessment of muscle mass, strength, and function

CKDa/dialysis considerations

Muscle mass Bioelectrical impedance (BIA) BIA—measured after midweek session (in dialysis)

Dual X-ray absorptiometry (DXA) Significant atrophy of skeletal muscle may interfere with measurements in 
some patients

Computerized tomography (CT)

Magnetic resonance imaging (MRI)

Strength Isotonic (constant load) Dynamometry, free 
weights

Using limb contralateral to dialysis access

Isometric (constant angle) Hand-held 
dynamometry, computerized dynamometry, 
manual testing

Timing test with dialysis (pre-or post-dialysis)

Isokinetic (constant velocity) Computerized 
dynamometry

Function Gait Speed (4 m walk) Vascular complications, amputations, and neuropathy in CKD patients may 
limit use of certain tests.

6 min walk test

Repeated chair stand

Timed up and go

Upper body ergometer

a
Reference values/cutoffs from healthy populations are likely different from those from CKD patients

Curr Osteoporos Rep. Author manuscript; available in PMC 2016 May 07.


	Abstract
	Muscle and Its Effect on the Bone in CKD
	Assessment of Skeletal Muscle Loss in Chronic Kidney Disease
	Pathophysiology of CKD-Associated Sarcopenia
	Skeletal Muscle Regeneration
	Androgens
	Vitamin D
	Renin-Angiotensin System
	IGF/Insulin
	Ubiquitin-Proteasome Pathway
	Myostatin

	Conclusion
	References
	Fig. 1
	Fig. 2
	Table 1

