681 research outputs found

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Recoil-Induced-Resonances in Nonlinear, Ground-State, Pump-Probe Spectroscopy

    Full text link
    A theory of pump-probe spectroscopy is developed in which optical fields drive two-photon Raman transitions between ground states of an ensemble of three-level Λ\Lambda atoms. Effects related to the recoil the atoms undergo as a result of their interactions with the fields are fully accounted for in this theory. The linear absorption coefficient of a weak probe field in the presence of two pump fields of arbitrary strength is calculated. For subrecoil cooled atoms, the spectrum consists of eight absorption lines and eight emission lines. In the limit that χ1â‰Șχ2\chi_{1}\ll \chi_{2}, where χ1\chi_{1} and χ2\chi_{2} are the Rabi frequencies of the two pump fields, one recovers the absorption spectrum for a probe field interacting with an effective two-level atom in the presence of a single pump field. However when χ1â‰łÏ‡2\chi_{1}\gtrsim \chi_{2}, new interference effects arise that allow one to selectively turn on and off some of these recoil induced resonances.Comment: 30 pages, 8 figures. RevTex. Submitted to Phys. Rev. A, Revised versio

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference

    Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    Full text link
    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser and a strong classical coupling laser, which form a three-level Lambda-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency (EIT) with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and inter-atomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.Comment: 9 pages, 1 figur

    Heavy quark diffusion in QCD and N=4 SYM at next-to-leading order

    Full text link
    We present the full details of a calculation at next-to-leading order of the momentum diffusion coefficient of a heavy quark in a hot, weakly coupled, QCD plasma. Corrections arise at O(g_s); physically they represent interference between overlapping scatterings, as well as soft, electric scale (p ~ gT) gauge field physics, which we treat using the hard thermal loop (HTL) effective theory. In 3-color, 3-flavor QCD, the momentum diffusion constant of a fundamental representation heavy quark at NLO is kappa = (16\pi/3) alpha_s^2 T^3 (log(1/g) + 0.07428 + 1.9026 g). We extend the computation to a heavy fundamental representation ``probe'' quark in large N_c, N=4 Super Yang-Mills theory, where the result is kappa^{SYM}= (lambda^2 T^3)(6\pi) (log(1/\sqrt{\lambda}) + 0.4304 + 0.8010 \sqrt{lambda}) (where lambda=g_s^2 N_c is the t'Hooft coupling). In the absence of some resummation technique, the convergence of perturbation theory is poor.Comment: 40 pages, 14 figure

    Semiclassical force for electroweak baryogenesis: three-dimensional derivation

    Get PDF
    We derive a semiclassical transport equation for fermions propagating in the presence of a CP-violating planar bubble wall at a first order electroweak phase transition. Starting from the Kadanoff-Baym (KB) equation for the two-point (Wightman) function we perform an expansion in gradients, or equivalently in the Planck constant h-bar. We show that to first order in h-bar the KB equations have a spectral solution, which allows for an on-shell description of the plasma excitations. The CP-violating force acting on these excitations is found to be enhanced by a boost factor in comparison with the 1+1-dimensional case studied in a former paper. We find that an identical semiclassical force can be obtained by the WKB method. Applications to the MSSM are also mentioned.Comment: 19 page

    Pumping current of a Luttinger liquid with finite length

    Get PDF
    We study transport properties in a Tomonaga-Luttinger liquid in the presence of two time-dependent point like weak impurities, taking into account finite-length effects. By employing analytical methods and performing a perturbation theory, we compute the backscattering pumping current (I_bs) in different regimes which can be established in relation to the oscillatory frequency of the impurities and to the frequency related to the length and the renormalized velocity (by the electron-electron interactions) of the charge density modes. We investigate the role played by the spatial position of the impurity potentials. We also show how the previous infinite length results for I_bs are modified by the finite size of the system.Comment: 9 pages, 7 figure

    Dynamical Casimir effect without boundary conditions

    Full text link
    The moving-mirror problem is microscopically formulated without invoking the external boundary conditions. The moving mirrors are described by the quantized matter field interacting with the photon field, forming dynamical cavity polaritons: photons in the cavity are dressed by electrons in the moving mirrors. The effective Hamiltonian for the polariton is derived, and corrections to the results based on the external boundary conditions are discussed.Comment: 12 pages, 2 figure

    A Step Beyond the Bounce: Bubble Dynamics in Quantum Phase Transitions

    Full text link
    We study the dynamical evolution of a phase interface or bubble in the context of a \lambda \phi^4 + g \phi^6 scalar quantum field theory. We use a self-consistent mean-field approximation derived from a 2PI effective action to construct an initial value problem for the expectation value of the quantum field and two-point function. We solve the equations of motion numerically in (1+1)-dimensions and compare the results to the purely classical evolution. We find that the quantum fluctuations dress the classical profile, affecting both the early time expansion of the bubble and the behavior upon collision with a neighboring interface.Comment: 12 pages, multiple figure
    • 

    corecore