54,401 research outputs found

    Remote sensor imagery in urban research - Some potentialities and problem

    Get PDF
    Imaging techniques of urban data collection for development and plannin

    Sound separation probe

    Get PDF
    Probe separates sound waves from turbulent flow pressure fluctuations in ducted airstreams by using principle that sound waves and turbulent flow pressure perturbations travel at different velocities

    Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy

    Full text link
    The hidden photon model is one of the simplest models which can explain the anomaly of the muon anomalous magnetic moment (g-2). The experimental constraints are studied in detail, which come from the electron g-2 and the hydrogen transition frequencies. The input parameters are set carefully in order to take dark photon contributions into account and to prevent the analysis from being self-inconsistent. It is shown that the new analysis provides a constraint severer by more than one order of magnitude than the previous result.Comment: 18 pages, 2 figures, 1 table. v2: minor correction

    Structural Analysis and Performance-Based Validation of a Composite Wing Spar

    Get PDF
    Electric-motor powered aircraft possess the ability to operate with efficient energy delivery, but lack the operational range of internal combustion engine powered aircraft. This range limitation requires the use of high aspect ratio, thin-chord wings to minimize aerodynamic drag losses, which results in highly loaded composite spar structures. High aspect ratio wings are required to increase mission durations for a NASA-developed experimental multi-rotor electric powered aircraft denoted as the Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) or X-57. This paper examines the structural performance of the composite main wing spars to validate spar strength using ply-based laminate finite element methods. Geometric scaling of a main spar test-section was initially proposed for proof-testing but sacrificed stability. Ply-based structures modeling with local structural features was implemented as a risk-reduction methodology. Ply-based modeling was selected to augment the conventional building block approach to reduce risk, and leverage a performance-based approval processes encouraged in Federal Aviation Administration (FAA) design guidance. Therefore, ply-based laminate modeling of the full-scale main spar and forward spar shear-web attachments were subsequently undertaken to determine load path complexity with predicted flight loads. Ply-based modeling included stress concentrations and interlaminate behavior at interface locations that can be obscured in traditional finite element sizing models. Analysis of the wing spar laminate ply-based models compared with bearing test coupon performance was used to reduce future wing assembly proof-testing burden and facilitate performance-based flight hardware safety for the X-57 experimental aircraft

    Geometric criticality between plaquette phases in integer-spin kagome XXZ antiferromagnets

    Full text link
    The phase diagram of the uniaxially anisotropic s=1s=1 antiferromagnet on the kagom\'e lattice includes a critical line exactly described by the classical three-color model. This line is distinct from the standard geometric classical criticality that appears in the classical limit (ss \to \infty) of the 2D XY model; the s=1s=1 geometric T=0 critical line separates two unconventional plaquette-ordered phases that survive to nonzero temperature. The experimentally important correlations at finite temperature and the nature of the transitions into these ordered phases are obtained using the mapping to the three-color model and a combination of perturbation theory and a variational ansatz for the ordered phases. The ordered phases show sixfold symmetry breaking and are similar to phases proposed for the honeycomb lattice dimer model and s=1/2s=1/2 XXZXXZ model. The same mapping and phase transition can be realized also for integer spins s2s \geq 2 but then require strong on-site anisotropy in the Hamiltonian.Comment: 5 pages, 2 figure

    Prediction of VO\u3csub\u3e2\u3c/sub\u3e Peak Using Sub-Maximum Bench Step Test in Children

    Get PDF
    The purpose of this study was to develop a valid prediction of maximal oxygen uptake from data collected during a submaximum bench stepping test among children ages 8-12 years. Twentyseven active subjects (16 male and 11 female), weight 36.1 kg, height 144.4 cm and VO2 47.4 ± 7.9 ml/kg/min participated. Subjects completed a maximal oxygen consumption test with analysis of expired air and a submaximal bench stepping test. A formula to predict VO2max was developed from height, resting heart rate and heart rate response during the submaximum bench stepping test. This formula accounted for 71% of the variability in maximal oxygen consumption and is the first step in verifying the validity of the submaximum bench stepping test to predict VO2max. VO2max = -2.354 + (Height in cm * 0.065) + (Resting Heart Rate * 0.008) + (Step Test Average Heart Rate as a Percentage of Resting Heart Rate * -0.870

    RTCC requirements for mission G - Trajectory computers for TLI and MCC processors, part 1 Final report

    Get PDF
    Functional properties of trajectory computers for translunar injection and midcourse correction procedures on lunar orbit

    Entanglement entropy of random quantum critical points in one dimension

    Get PDF
    For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.Comment: 4 pages, 3 figure

    Solvable Hydrodynamics of Quantum Integrable Systems

    Get PDF
    The conventional theory of hydrodynamics describes the evolution in time of chaotic many-particle systems from local to global equilibrium. In a quantum integrable system, local equilibrium is characterized by a local generalized Gibbs ensemble or equivalently a local distribution of pseudo-momenta. We study time evolution from local equilibria in such models by solving a certain kinetic equation, the "Bethe-Boltzmann" equation satisfied by the local pseudo-momentum density. Explicit comparison with density matrix renormalization group time evolution of a thermal expansion in the XXZ model shows that hydrodynamical predictions from smooth initial conditions can be remarkably accurate, even for small system sizes. Solutions are also obtained in the Lieb-Liniger model for free expansion into vacuum and collisions between clouds of particles, which model experiments on ultracold one-dimensional Bose gases.Comment: 6+5 pages, published versio
    corecore