2,456 research outputs found

    How Hidden are Hidden Processes? A Primer on Crypticity and Entropy Convergence

    Full text link
    We investigate a stationary process's crypticity---a measure of the difference between its hidden state information and its observed information---using the causal states of computational mechanics. Here, we motivate crypticity and cryptic order as physically meaningful quantities that monitor how hidden a hidden process is. This is done by recasting previous results on the convergence of block entropy and block-state entropy in a geometric setting, one that is more intuitive and that leads to a number of new results. For example, we connect crypticity to how an observer synchronizes to a process. We show that the block-causal-state entropy is a convex function of block length. We give a complete analysis of spin chains. We present a classification scheme that surveys stationary processes in terms of their possible cryptic and Markov orders. We illustrate related entropy convergence behaviors using a new form of foliated information diagram. Finally, along the way, we provide a variety of interpretations of crypticity and cryptic order to establish their naturalness and pervasiveness. Hopefully, these will inspire new applications in spatially extended and network dynamical systems.Comment: 18 pages, 18 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/iacp2.ht

    How to Truly Optimize Phosphate Flotation, When Feed Grade is Ever-changing

    Get PDF
    Optimizing a reagent package or beneficiation process on an average feed experienced at a float plant is one of the key objectives in successfully achieving an optimal, average grade/recovery for any mineral being processed. However, unlike the quality controlled processing chemistries, or engineered process, the mineralogy is minimally controlled by selective mining at best. The change in mineralogy can be a blessing or curse, and can even devastate a plant in matter of minutes. Therefore, applying techniques such as using the core samples from mine planning, or sophisticated analytical instrumentation can assist with planning when a detrimental change will occur. However, seasoned and informed floatation operators are necessary for ensuring the plant is prepared to handle these changes. This paper focuses on the results obtained from the application of a technical service program, which allowed for the investigation of various problematic feeds that plague a phosphate flotation plant. The purpose of this investigation was to investigate the cause, and develop a response plan for the flotation operators and engineers for when these difficult feeds reach the plant. Please click Additional Files below to see the full abstract

    Tailoring Collectors to Allow for Sea Water Usage in Phosphate Beneficiation

    Get PDF
    Water supply is critical for ensuring the optimal operation of any beneficiation plant. As ore quality continues to decline, the demand on water for mineral processing will only increase. Traditionally, ground and surface water sources have been extensively utilized for mining. In some regions, these sources are proving to be insufficient to meet the increasing demands of this industry, as well as the municipal requirements. As a result, alternate water supplies must be considered. The purpose of this investigation was to develop a collector that allows for the flotation of phosphate in sea water, while still meeting the grade (\u3e 27.5% P2O5) and recovery (\u3e 80%) criteria. Please click Additional Files below to see the full abstract

    A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE of COLD ACCRETION from the COSMIC WEB

    Get PDF
    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows - relatively cool (T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 1012 M o halo. The orbital time of the outer part of the what we term a "protodisk" is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic we

    Security Monitoring System for a Bulk Foodstuff Transport Container

    Get PDF
    A security monitoring system provides for the secure transport of a bulk foodstuff container. The system includes an electromechanical locking mechanism allowing access by only authorized persons, a positional locator for determining the geographical position of the bulk foodstuff transport container, and a controller associated with the transport container. The controller controls operation of the electromechanical locking mechanism, stores data received from the electromechanical locking mechanism and the positional locator, and communicates with a remote data processor in near real time. A handheld user interface device is configured to control operation of the controller, to process and store data received from the controller, and to communicate with the remote data processor. Unique identifiers are provided for the bulk foodstuff transport container, the transport vehicle, any storage container from which or into which a bulk foodstuff is transferred, and any authorized operator of the security monitoring system

    A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web

    Get PDF
    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool (T ~ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10^(12) M_⊙ halo. The orbital time of the outer part of the what we term a "protodisk" is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web

    Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae

    Get PDF
    In this first paper in a series we present 1298 low-redshift (z\leq0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through 2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10,400 Ang., roughly twice as wide as spectra from most previously published datasets. We present our observing and reduction procedures, and we describe the resulting SN Database (SNDB), which will be an online, public, searchable database containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilising our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire dataset, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. [Abridged]Comment: 34 pages, 11 figures, 11 tables, revised version, re-submitted to MNRAS. Spectra will be released in January 2013. The SN Database homepage (http://hercules.berkeley.edu/database/index_public.html) contains the full tables, plots of all spectra, and our new SNID template
    corecore