13 research outputs found

    NCOA4 Regulates Iron Recycling and Responds to Hepcidin Activity and Lipopolysaccharide in Macrophages

    Get PDF
    Macrophages, via erythrophagocytosis, recycle iron from effete erythrocytes to newly developing red blood cells. Conversion of potentially cytotoxic levels of iron from its heme into nonheme form during iron recycling is safely accomplished via coordinated regulations of cellular iron transport and homeostasis. Herein, we demonstrate the roles and regulation of NCOA4 (nuclear receptor coactivator 4)-mediated ferritinophagy in macrophages after erythrophagocytosis using the mouse macrophage cell line J774 cells. Ferritin in J774 cells increased with the rise of nonheme iron by erythrocyte ingestion and declined when total cellular iron contents subsequently decreased. NCOA4, a selective autophagic cargo receptor for ferritin, was responsible for the control of cellular ferritin and total iron contents at the later stage of erythrophagocytosis. A hepcidin analog, which limits the flux of iron through iron-recycling by inhibiting iron export at the plasma membrane, repressed NCOA4 expression and led to accumulation of ferritin in the mouse macrophages. Transcriptome analyses revealed a functional association of immune response with NCOA4-dependent gene expressions, and we confirmed repression of Ncoa4 by lipopolysaccharide (LPS) in J774 cells and the spleen of mice. Collectively, our studies indicate that NCOA4 facilitates cellular ferritin turnover and the release of iron by macrophages after erythrophagocytosis and functions as a regulatory target for molecular signals of systemic iron overload and inflammation. These identify macrophage NCOA4 as a potential therapeutic target for disorders of systemic iron dysregulation, including anemia of inflammation and hemochromatosis

    Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase

    Get PDF
    Although cells express hundreds of metalloenzymes, the mechanisms by which apoenzymes receive their metal cofactors are largely unknown. Poly(rC)-binding proteins PCBP1 and PCBP2 are multifunctional adaptor proteins that bind iron and deliver it to ferritin for storage or to prolyl and asparagyl hydroxylases to metallate the mononuclear iron center. Here, we show that PCBP1 and PCBP2 also deliver iron to deoxyhypusine hydroxylase (DOHH), the dinuclear iron enzyme required for hypusine modification of the translation factor eukaryotic initiation factor 5A. Cells depleted of PCBP1 or PCBP2 exhibited loss of DOHH activity and loss of the holo form of the enzyme in cells, particularly when cells were made mildly iron-deficient. Lysates containing PCBP1 and PCBP2 converted apo-DOHH to holo-DOHH in vitro with greater efficiency than lysates lacking PCBP1 or PCBP2. PCBP1 bound to DOHH in iron-treated cells but not in control or iron-deficient cells. Depletion of PCBP1 or PCBP2 had no effect on the cytosolic Fe-S cluster enzyme xanthine oxidase but led to loss of cytosolic aconitase activity. Loss of aconitase activity was not accompanied by gain of RNAbinding activity, a pattern suggesting the incomplete disassembly of the [4Fe-4S] cluster. PCBP depletions had minimal effects on total cellular iron, mitochondrial iron levels, and heme synthesis. Thus, PCBP1 and PCBP2 may serve as iron chaperones to multiple classes of cytosolic nonheme iron enzymes and may have a particular role in restoring metal cofactors that are spontaneously lost in iron deficient cells

    MTF-1-Mediated Repression of the Zinc Transporter Zip10 Is Alleviated by Zinc Restriction

    Get PDF
    The regulation of cellular zinc uptake is a key process in the overall mechanism governing mammalian zinc homeostasis and how zinc participates in cellular functions. We analyzed the zinc transporters of the Zip family in both the brain and liver of zinc-deficient animals and found a large, significant increase in Zip10 expression. Additionally, Zip10 expression decreased in response to zinc repletion. Moreover, isolated mouse hepatocytes, AML12 hepatocytes, and Neuro 2A cells also respond differentially to zinc availability in vitro. Measurement of Zip10 hnRNA and actinomycin D inhibition studies indicate that Zip10 was transcriptionally regulated by zinc deficiency. Through luciferase promoter constructs and ChIP analysis, binding of MTF-1 to a metal response element located 17 bp downstream of the transcription start site was shown to be necessary for zinc-induced repression of Zip10. Furthermore, zinc-activated MTF-1 causes down-regulation of Zip10 transcription by physically blocking Pol II movement through the gene. Lastly, ZIP10 is localized to the plasma membrane of hepatocytes and neuro 2A cells. Collectively, these results reveal a novel repressive role for MTF-1 in the regulation of the Zip10 zinc transporter expression by pausing Pol II transcription. ZIP10 may have roles in control of zinc homeostasis in specific sites particularly those of the brain and liver. Within that context ZIP10 may act as an important survival mechanism during periods of zinc inadequacy

    Cellular Zinc Deficiency Impairs Heme Biosynthesis in Developing Erythroid Progenitors

    Get PDF
    Anemia is the most prevalent nutrition-related disorder worldwide. Zinc is an essential trace element for various biological processes in the body, and zinc deficiency has been associated with anemia in humans. However, the molecular mechanisms by which zinc availability alters red blood cell development remain uncertain. The present study identifies the essentiality of zinc during erythroid development, particularly for normal heme biosynthesis. G1E-ER4 mouse cells were used as an in vitro model of terminal erythroid differentiation, which featured elevated cellular zinc content by development. Restriction of zinc import compromised the rate of heme and Ξ±-globin production and, thus, the hemoglobinization of the erythroid progenitors. Heme is synthesized by the incorporation of iron into protoporphyrin. The lower heme production under zinc restriction was not due to changes in iron but was attributable to less porphyrin synthesis. The requirement of adequate zinc for erythroid heme metabolism was confirmed in another erythropoietic cell model, MEL-DS19. Additionally, we found that a conventional marker of iron deficiency anemia, the ZnPP-to-heme ratio, responded to zinc restriction differently from iron deficiency. Collectively, our findings define zinc as an essential nutrient integral to erythroid heme biosynthesis and, thus, a potential therapeutic target for treating anemia and other erythrocyte-related disorders

    The Causal Effects of Blood Iron and Copper on Lipid Metabolism Diseases: Evidence from Phenome-Wide Mendelian Randomization Study

    No full text
    Blood levels of iron and copper, even within their normal ranges, have been associated with a wide range of clinical outcomes. The available epidemiological evidence for these associations is often inconsistent and suffers from confounding and reverse causation. This study aims to examine the causal clinical effects of blood iron and copper with Mendelian randomization (MR) analyses. Genetic instruments for the blood levels of iron and copper were curated from existing genome-wide association studies. Candidate clinical outcomes were identified based on a phenome-wide association study (PheWAS) between these genetic instruments and a wide range of phenotypes in 310,999 unrelated individuals of European ancestry from the UK Biobank. All signals passing stringent correction for multiple testing were followed by MR analyses, with replication in independent data sources where possible. We found that genetically predicted higher blood levels of iron and copper are both associated with lower risks of iron deficiency anemia (odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.67–0.85, p = 1.90 × 10−6 for iron; OR = 0.88, 95% CI: 0.78–0.98, p = 0.032 for copper), lipid metabolism disorders, and its two subcategories, hyperlipidemia (OR = 0.90, 95% CI: 0.85–0.96, p = 6.44 × 10−4; OR = 0.92, 95% CI: 0.87–0.98, p = 5.51 × 10−3) and hypercholesterolemia (OR = 0.90, 95% CI: 0.84–0.95, p = 5.34 × 10−4; OR = 0.93, 95% CI: 0.89–0.99, p = 0.022). Consistently, they are also associated with lower blood levels of total cholesterol and low-density lipoprotein cholesterol. Multiple sensitivity tests were applied to assess the presence of pleiotropy and the robustness of causal estimates. Regardless of the approaches, consistent evidence was obtained. Moreover, the unique clinical effects of each blood mineral were identified. Notably, genetically predicated higher blood iron is associated with an enhanced risk of varicose veins (OR = 1.28, 95% CI: 1.15–1.42, p = 4.34 × 10−6), while blood copper is positively associated with the risk of osteoarthrosis (OR = 1.07, 95% CI: 1.02–1.13, p = 0.010). Sex-stratified MR analysis further revealed some degree of sex differences in their clinical effects. Our comparative PheWAS-MR study of iron and copper comprehensively characterized their shared and unique clinical effects, highlighting their potential causal roles in hyperlipidemia and hypercholesterolemia. Given the modifiable nature of blood mineral status and the potential for clinical intervention, these findings warrant further investigation

    Zinc Transporter ZIP14 Functions in Hepatic Zinc, Iron and Glucose Homeostasis during the Innate Immune Response (Endotoxemia)

    Get PDF
    <div><p>ZIP14 (slc39A14) is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia) of acute inflammation. ZIP14 can transport Zn<sup>2+</sup> and non-transferrin-bound Fe<sup>2+</sup> in vitro. Using a <em>Zip14<sup>βˆ’/βˆ’</sup></em> mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using <em>ZIP14<sup>βˆ’/βˆ’</sup></em> mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, <em>Zip14<sup>βˆ’/βˆ’</sup></em> mice absorbed more iron. The <em>Zip14</em> KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of <em>Zip14βˆ’/βˆ’</em> mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The <em>Zip14<sup>βˆ’/βˆ’</sup></em> phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The <em>Zip14</em> KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are altered in the <em>Zip14<sup>βˆ’/βˆ’</sup></em> mice and their phenotype shows defects in glucose homeostasis.</p> </div

    Deletion of <i>Zip14</i> in mice produces altered glucose homeostasis and IR functions.

    No full text
    <p>(A) Body composition of the WT and Zip14<sup>βˆ’/βˆ’</sup> female mice was measured using a NMR Lean/Fat analyzer. (B) Serum and liver glucose from fed-mice were measured by OneTouch UltraMini and colorimetrically, respectively. (C, D) Serum insulin and liver cAMP were measured by ELISA. (E, F) Western analysis results from liver of three mice are shown for each treatment group. (G) Total RNA was isolated from livers and relative transcript abundance for GLUT2, PEPCK, SREBP-1c, FASN and SOCS-3 were measured by qPCR and expressed relative to TBP mRNA as the normalizer. Values are mean Β± SE, nβ€Š=β€Š3βˆ’5.</p

    <i>Zip14<sup>βˆ’/βˆ’</sup></i> mice exhibit normal iron absorption but altered iron homeostasis.

    No full text
    <p>(A) WT and Zip14<sup>βˆ’/βˆ’</sup> mice were administered LPS (2 mg/kg or saline 0.5 mL; ip), 18 hr before being killed. (A) Serum and liver iron concentrations were measured by AAS. Liver non-heme-iron was measured colorimetrically. (B) Fasted WT and <i>Zip14<sup>βˆ’/βˆ’</sup></i> mice received 2 Β΅Ci of <sup>59</sup>Fe by gavage and were killed 24 hr later. Percent absorption was calculated from the radioactivity administered. Serum and liver iron uptake was calculated from the specific activity of the <sup>59</sup>Fe. (C) Transcript abundance for liver hepcidin, TfR-1, DMT1 and ferritin was measured by qPCR and expressed relative to TBP mRNA as the normalizer. Values are mean Β± SE, nβ€Š=β€Š5βˆ’10.</p

    LPS differentially regulates ZIP14 expression in mice.

    No full text
    <p>Young adult mice received LPS (2 mg/kg, i.p.) or the same volume (0.5 mL) of saline (control), 1–18 hr before being killed. (A) Total RNA was isolated and <i>Zip14</i> mRNA was measured by qPCR and expressed relative to TBP mRNA as the normalizer. ZIP14 protein abundance was measured by western analysis of liver homogenates. Representative western blots from multiple mice (nβ€Š=β€Š3βˆ’4) were measured for ZIP14 abundance by densitometry. (B, C) Zinc concentrations in serum and liver, in Β΅g/mL and Β΅g/g respectively, were measured by AAS. (D, E) Comparison of Zip14 mRNA and ZIP14 protein in WT and <i>Zip14</i> KO mice 18 hr after LPS, as measured by qPCR and western analysis. Values are mean Β± SD, nβ€Š=β€Š3βˆ’5. (E) ZIP14 protein is increased at the plasma membrane of hepatocytes of WT mice but not Zip14<sup>βˆ’/βˆ’</sup> mice following LPS. Localization was by confocal microscopy using ZIP14 antibody and Alexa fluor594 secondary antibody and DAPI as the nuclear marker. (F) Serum IL-6 as measured by ELISA was used as an indicator of efficiency of LPS administration. The IL6 response from LPS was attenuated in the <i>Zip14<sup>βˆ’/βˆ’</sup></i> mice. (*β€Š=β€ŠP<0.05, **β€Š=β€ŠP<0.01, ***β€Š=β€ŠP<0.001, ****β€Š=β€ŠP<0.0001).</p
    corecore