19,754 research outputs found

    Arkansas Wheat Cultivar Performance Tests 2018-2019

    Get PDF
    Wheat cultivar performance tests are conducted each year in Ark- ansas by the University of Arkansas System Division of Agriculture’s Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers. The tests are conducted at the Northeast Research and Extension Center at Keiser, the Vegetable Substation near Kibler, the Lon Mann Cotton Research Station near Marianna, the Newport Extension Center near Newport, the Rohwer Research Station near Rohwer, the Pine Tree Research Station near Colt, and the Hope Research and Extension Center. In addition, entries are evaluated in a stripe rust (Puccinia striiformis f.sp. tritici) inoculated nursery in Fayetteville and a Fusarium head blight (FHB) inoculated nursery in Newport and Fayetteville. Specific location and cultural practice information accompany each table

    Arkansas Wheat Cultivar Performance Tests 2016-2017

    Get PDF
    Wheat cultivar performance tests are conducted each year in Arkansas by the University of Arkansas System Division of Agriculture’s Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers

    Quantum Hall Ferromagnets: Induced Topological term and electromagnetic interactions

    Full text link
    The ν=1\nu = 1 quantum Hall ground state in materials like GaAs is well known to be ferromagnetic in nature. The exchange part of the Coulomb interaction provides the necessary attractive force to align the electron spins spontaneously. The gapless Goldstone modes are the angular deviations of the magnetisation vector from its fixed ground state orientation. Furthermore, the system is known to support electrically charged spin skyrmion configurations. It has been claimed in the literature that these skyrmions are fermionic owing to an induced topological Hopf term in the effective action governing the Goldstone modes. However, objections have been raised against the method by which this term has been obtained from the microscopics of the system. In this article, we use the technique of the derivative expansion to derive, in an unambiguous manner, the effective action of the angular degrees of freedom, including the Hopf term. Furthermore, we have coupled perturbative electromagnetic fields to the microscopic fermionic system in order to study their effect on the spin excitations. We have obtained an elegant expression for the electromagnetic coupling of the angular variables describing these spin excitations.Comment: 23 pages, Plain TeX, no figure

    Splitting The Gluon?

    Full text link
    In the strongly correlated environment of high-temperature cuprate superconductors, the spin and charge degrees of freedom of an electron seem to separate from each other. A similar phenomenon may be present in the strong coupling phase of Yang-Mills theories, where a separation between the color charge and the spin of a gluon could play a role in a mass gap formation. Here we study the phase structure of a decomposed SU(2) Yang-Mills theory in a mean field approximation, by inspecting quantum fluctuations in the condensate which is formed by the color charge component of the gluon field. Our results suggest that the decomposed theory has an involved phase structure. In particular, there appears to be a phase which is quite reminiscent of the superconducting phase in cuprates. We also find evidence that this phase is separated from the asymptotically free theory by an intermediate pseudogap phase.Comment: Improved discussion of magnetic nature of phases; removed unsubstantiated speculation about color confinemen

    The Radio Afterglow and Host Galaxy of the Dark GRB 020819

    Full text link
    Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius with the SXC on HETE-2, only two lack optical afterglow detections, and the high recovery rate among this sample has been used to argue that the fraction of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can be explained by the failure of ground-based searches to reach appropriate limiting magnitudes, suppression of the optical light of these SXC dark bursts seems likely. Here we report the discovery and observation of the radio afterglow of GRB 020819, an SXC dark burst, which enables us to identify the likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of the GRB. The radio light curve is qualitatively similar to that of several other radio afterglows, and may include an early-time contribution from the emission of the reverse shock. The proposed host is a bright R = 19.5 mag barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from the galaxy core (16 kpc in projection), that is coincident with the radio afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after the burst and extending over more than 100 days, establishes strong upper limits to the optical brightness of any afterglow or associated supernova. Combining the afterglow radio fluxes and our earliest R-band limit, we find that the most likely afterglow model invokes a spherical expansion into a constant-density (rather than stellar wind-like) external environment; within the context of this model, a modest local extinction of A_V ~ 1 mag is sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see http://www.astro.ku.dk/~pallja/dark.htm

    Coarse-grained computations of demixing in dense gas-fluidized beds

    Full text link
    We use an "equation-free", coarse-grained computational approach to accelerate molecular dynamics-based computations of demixing (segregation) of dissimilar particles subject to an upward gas flow (gas-fluidized beds). We explore the coarse-grained dynamics of these phenomena in gently fluidized beds of solid mixtures of different densities, typically a slow process for which reasonable continuum models are currently unavailable

    Compaction and dilation rate dependence of stresses in gas-fluidized beds

    Full text link
    A particle dynamics-based hybrid model, consisting of monodisperse spherical solid particles and volume-averaged gas hydrodynamics, is used to study traveling planar waves (one-dimensional traveling waves) of voids formed in gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging in a co-traveling frame, we compute solid phase continuum variables (local volume fraction, average velocity, stress tensor, and granular temperature) across the waves, and examine the relations among them. We probe the consistency between such computationally obtained relations and constitutive models in the kinetic theory for granular materials which are widely used in the two-fluid modeling approach to fluidized beds. We demonstrate that solid phase continuum variables exhibit appreciable ``path dependence'', which is not captured by the commonly used kinetic theory-based models. We show that this path dependence is associated with the large rates of dilation and compaction that occur in the wave. We also examine the relations among solid phase continuum variables in beds of cohesive particles, which yield the same path dependence. Our results both for beds of cohesive and non-cohesive particles suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect analysis added

    Skyrmion Dynamics and NMR Line Shapes in QHE Ferromagnets

    Full text link
    The low energy charged excitations in quantum Hall ferromagnets are topological defects in the spin orientation known as skyrmions. Recent experimental studies on nuclear magnetic resonance spectral line shapes in quantum well heterostructures show a transition from a motionally narrowed to a broader `frozen' line shape as the temperature is lowered at fixed filling factor. We present a skyrmion diffusion model that describes the experimental observations qualitatively and shows a time scale of 50μsec\sim 50 \mu{\rm sec} for the transport relaxation time of the skyrmions. The transition is characterized by an intermediate time regime that we demonstrate is weakly sensitive to the dynamics of the charged spin texture excitations and the sub-band electronic wave functions within our model. We also show that the spectral line shape is very sensitive to the nuclear polarization profile along the z-axis obtained through the optical pumping technique.Comment: 6 pages, 4 figure

    Bag Formation in Quantum Hall Ferromagnets

    Full text link
    Charged skyrmions or spin-textures in the quantum Hall ferromagnet at filling factor nu=1 are reinvestigated using the Hartree-Fock method in the lowest Landau level approximation. It is shown that the single Slater determinant with the minimum energy in the unit charge sector is always of the hedgehog form. It is observed that the magnetization vector's length deviates locally from unity, i.e. a bag is formed which accommodates the excess charge. In terms of a gradient expansion for extended spin-textures a novel O(3) type of effective action is presented, which takes bag formation into account.Comment: 13 pages, 3 figure

    HD 174005: another binary classified as lambda Boo

    Full text link
    We demonstrate that HD 174005, a star recently classified as belonging to the lambda Boo group, is in reality a double lined spectroscopic binary; at some phases, the observed composite spectrum may be similar to that of a single star with weak metal lines.Comment: Accepted by A&
    corecore