18,940 research outputs found

    Reentrant Melting of Soliton Lattice Phase in Bilayer Quantum Hall System

    Full text link
    At large parallel magnetic field B∄B_\parallel, the ground state of bilayer quantum Hall system forms uniform soliton lattice phase. The soliton lattice will melt due to the proliferation of unbound dislocations at certain finite temperature leading to the Kosterlitz-Thouless (KT) melting. We calculate the KT phase boundary by numerically solving the newly developed set of Bethe ansatz equations, which fully take into account the thermal fluctuations of soliton walls. We predict that within certain ranges of B∄B_\parallel, the soliton lattice will melt at TKTT_{\rm KT}. Interestingly enough, as temperature decreases, it melts at certain temperature lower than TKTT_{\rm KT} exhibiting the reentrant behaviour of the soliton liquid phase.Comment: 11 pages, 2 figure

    Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes

    Full text link
    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected with measurement errors on discretized grids. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo. Compared to the standard Bayesian inference that suffers serious computational burden and unstableness for analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results as the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids where the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes.Comment: Under revie

    Stiffness and energy losses in cylindrically symmetric superconductor levitating systems

    Full text link
    Stiffness and hysteretic energy losses are calculated for a magnetically levitating system composed of a type-II superconductor and a permanent magnet when a small vibration is produced in the system. We consider a cylindrically symmetric configuration with only vertical movements and calculate the current profiles under the assumption of the critical state model. The calculations, based on magnetic energy minimization, take into account the demagnetization fields inside the superconductor and the actual shape of the applied field. The dependence of stiffness and hysteretic energy losses upon the different important parameters of the system such as the superconductor aspect ratio, the relative size of the superconductor-permanent magnet, and the critical current of the superconductor are all systematically studied. Finally, in view of the results, we provide some trends on how a system such as the one studied here could be designed in order to optimize both the stiffness and the hysteretic losses.Comment: 8 pages; 8 figure

    Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System

    Full text link
    We numerically study the interacting quantum Hall skyrmion system based on the Chern-Simons action. By noticing that the action is invariant under global spin rotations in the spin space with respect to the magnetic field direction, we obtain the low-energy effective action for a many skyrmion system. Performing extensive molecular dynamics simulations, we establish the thermodynamic phase diagram for a many skyrmion system.Comment: 4 pages, RevTex, 2 postscript figure

    Three very young HgMn stars in the Orion OB1 Association

    Get PDF
    We report the detection of three mercury-manganese stars in the Orion OB1 association. HD 37886 and BD-0 984 are in the approximately 1.7 million year old Orion OB1b. HD 37492 is in the approximately 4.6 million year old Orion OB1c. Orion OB1b is now the youngest cluster with known HgMn star members. This places an observational upper limit on the time scale needed to produce the chemical peculiarities seen in mercury-manganese stars, which should help in the search for the cause or causes of the peculiar abundances in HgMn and other chemically peculiar upper main sequence stars.Comment: 8 pages including 1 figure. To appear in Astrophysical Journal Letter

    Josephson surface plasmons in spatially confined cuprate superconductors

    Full text link
    In this work, we generalize the theory of localized surface plasmons to the case of high-Tc cuprate superconductors, spatially confined in the form of small spherical particles. At variance from ordinary metals, cuprate superconductors are characterized by a low-energy bulk excitation known as the Josephson plasma wave (JPW), arising from interlayer tunneling of the condensate along the c-axis. The effect of the JPW is revealed in a characteristic spectrum of surface excitations, which we call Josephson surface plasmons. Our results, which apply to any material with a strongly anisotropic electromagnetic response, are worked out in detail for the case of multilayered superconductors supporting both low-frequency (acoustic) and transverse-optical JPW. Spatial confinement of the Josephson plasma waves may represent a new degree of freedom to engineer their frequencies and to explore the link between interlayer tunnelling and high-Tc superconductivity

    Kink-induced transport and segregation in oscillated granular layers

    Get PDF
    We use experiments and molecular dynamics simulations of vertically oscillated granular layers to study horizontal particle segregation induced by a kink (a boundary between domains oscillating out of phase). Counter-rotating convection rolls carry the larger particles in a bidisperse layer along the granular surface to a kink, where they become trapped. The convection originates from avalanches that occur inside the layer, along the interface between solidified and fluidized grains. The position of a kink can be controlled by modulation of the container frequency, making possible systematic harvesting of the larger particles.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let

    Chaos in Small-World Networks

    Full text link
    A nonlinear small-world network model has been presented to investigate the effect of nonlinear interaction and time delay on the dynamic properties of small-world networks. Both numerical simulations and analytical analysis for networks with time delay and nonlinear interaction show chaotic features in the system response when nonlinear interaction is strong enough or the length scale is large enough. In addition, the small-world system may behave very differently on different scales. Time-delay parameter also has a very strong effect on properties such as the critical length and response time of small-world networks

    Nearest pattern interaction and global pattern formation

    Full text link
    We studied the effect of nearest pattern interaction on a globally pattern formation in a 2-dimensional space, where patterns are to grow initially from a noise in the presence of periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration

    Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy

    Get PDF
    The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds
    • 

    corecore