1,777 research outputs found

    Current-Induced Resonant Motion of a Magnetic Vortex Core: Effect of Nonadiabatic Spin Torque

    Full text link
    The current-induced resonant excitation of a magnetic vortex core is investigated by means of analytical and micromagnetic calculations. We find that the radius and the phase shift of the resonant motion are not correctly described by the analytical equations because of the dynamic distortion of a vortex core. In contrast, the initial tilting angle of a vortex core is free from the distortion and determined by the nonadiabaticity of the spin torque. It is insensitive to experimentally uncontrollable current-induced in-plane Oersted field. We propose that a time-resolved imaging of the very initial trajectory of a core is essential to experimentally estimate the nonadiabaticity.Comment: 4 pages, 4 figure

    Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling

    Full text link
    Magnetization dynamics in a ferromagnet can induce a spin-dependent electric field through spin motive force. Spin current generated by the spin-dependent electric field can in turn modify the magnetization dynamics through spin-transfer torque. While this feedback effect is usually weak and thus ignored, we predict that in Rashba spin-orbit coupling systems with large Rashba parameter αR\alpha_{\rm R}, the coupling generates the spin-dependent electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial \vec{m}/\partial t)], which can be large enough to modify the magnetization dynamics significantly. This effect should be relevant for device applications based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure

    Surgical anatomy of the uncinate process and transverse foramen determined by computer tomography

    Get PDF
    Study Design Computed tomography–based cohort study. Objective Although there are publications concerning the relationship between the vertebral artery and uncinate process, there is no practical guide detailing the dimensions of this region to use during decompression of the intervertebral foramen. The purpose of this study is to determine the anatomic parameters that can be used as a guide for thorough decompression of the intervertebral foramen. Methods Fifty-one patients with three-dimensional computed tomography scans of the cervical spine from 2003 to 2012 were included. On axial views, we measured the distance from the midline to the medial and lateral cortices of the pedicle bilaterally from C3 to C7. On coronal reconstructed views, we measured the minimum height of the uncinate process from the cranial cortex of the pedicle adjacent to the posterior cortex of vertebral body and the maximal height of the uncinate process from the cranial cortex of the pedicle at the midportion of the vertebral body bilaterally from C3 to C7. Results The mean distances from midline to the medial and lateral cortices of the pedicle were 10.1 ± 1.3 mm and 13.9 ± 1.5 mm, respectively. The mean minimum height of the uncinate process from the cranial cortex of the pedicle was 4.6 ± 1.6 mm and the mean maximal height was 6.1 ± 1.7 mm. Conclusions Our results suggest that in most cases, one can thoroughly decompress the intervertebral foramen by removing the uncinate out to 13 mm laterally from the midline and 4 mm above the pedicle without violating the transverse foramen

    Spin-wave propagation in the presence of inhomogeneous Dzyaloshinskii-Moriya interactions

    Get PDF
    We theoretically investigate spin-wave propagation through a magnetic metamaterial with spatially modulated Dzyaloshinskii-Moriya interaction. We establish an effective Schrodinger equation for spin waves and derive boundary conditions for spin waves passing through the boundary between two regions having different Dzyaloshinskii-Moriya interactions. Based on these boundary conditions, we find that the spin wave can be amplified at the boundary and the spin-wave band gap is tunable either by an external magnetic field or the strength of Dzyaloshinskii-Moriya interaction, which offers a spin-wave analog of the field-effect transistor in traditional electronics.112sciescopu

    Eigen damping constant of spin waves in ferromagnetic nanostructure

    Get PDF
    Though varying in nature, all waves share traits in a way that they all follow the superposition principle while also experiencing attenuation as they propagate in space. And thus it is more than common that a comprehensive investigation of one type of wave leads to a discovery that can be extended to all kinds of waves in other fields of research. In the field of magnetism, the wave of interest corresponds to the spin wave (SW). Specifically, there has been a push to use SWs as the next information carriers similar to how electromagnetic waves are used in photonics. At present, the biggest impediment in making SW-based device to be widely adapted is the fact that the SW experiences large attenuation due to the large damping constant. Here, we developed a method to find the SW eigenmodes and show that their respective eigen damping constants can be 40% smaller than the typical material damping constant. From a bigger perspective, this finding means that the attenuation of SW and also other types of waves in general is no more constrained by the material parameters, and it can be controlled by the shape of the waves instead. © 2019, The Author(s).1
    corecore