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spin waves in ferromagnetic
nanostructure
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Though varying in nature, all waves share traits in a way that they all follow the superposition principle
while also experiencing attenuation as they propagate in space. And thus it is more than common that a
comprehensive investigation of one type of wave leads to a discovery that can be extended to all kinds
of waves in other fields of research. In the field of magnetism, the wave of interest corresponds to the
spin wave (SW). Specifically, there has been a push to use SWs as the next information carriers similar
to how electromagnetic waves are used in photonics. At present, the biggest impediment in making
SW-based device to be widely adapted is the fact that the SW experiences large attenuation due to the
large damping constant. Here, we developed a method to find the SW eigenmodes and show that their
respective eigen damping constants can be 40% smaller than the typical material damping constant.
From a bigger perspective, this finding means that the attenuation of SW and also other types of waves
in general is no more constrained by the material parameters, and it can be controlled by the shape of
the waves instead.

In nature, one way for energy to be transferred from one position in space to another position is via a wave.
Although the method of generation as well as propagation may differ between one type of wave to the others, once
generated, a wave will travel to its surrounding without further need of additional external energy source. This
fact has made the use of waves to be attractive as information carrier, such as the use of electromagnetic waves
in telecommunication. In the field of magnetism, the wave of interest corresponds to the spin wave (SW). As the
transmission of SWs in a magnetic material does not necessarily require the application of electrical current,
SW-based devices have been envisioned to require much less energy to operate as compared to their electronics
counterparts due to negligible Joule heating. Already, huge progress has been made to realize SW-based device
for real-life applications, such as the development of SW transistor and multiplexer for logic applications'-!’.
However, one concern with using ferromagnetic material as the medium for SW device is the high damping con-
stant'?, which results in the SW losing significant amplitude and energy during its propagation.

It is long believed that the damping is purely determined by the materials parameters and the ellipticity of the
ferromagnetic resonance (FMR) precision'*!>. Due to this, yttrium iron garnet (YIG) have been considered as a
potential medium for SW devices'®? for its very low damping constant which allows the SW's to propagate in a
much longer distance. Nevertheless, YIG is not compatible with the current silicon integrated circuit technology,
as it requires the use of gadolinium gallium garnet (GGG) substrate for its growth. Therefore, efforts to optimize
SW transmission in ferromagnetic nanostructures are still undertaken, such as by engineering the layer struc-
ture?»?*, annealing?, interface control?”?, fabrication conditions®’, etc. However, it has also been shown that
different SW shapes experience different damping®*-2, which opens up new possibility of reducing the damping
constant by engineering the shape of the injected SW.

In this work, we report on a method to find the SWs shapes with the lowest damping constant in patterned
magnetic nanostructures, i.e. the SW eigenmodes. Subsequently, we show that the eigenmodes have unique
damping constants of their own, which we call them eigen damping constant. To illustrate our method, we pri-
marily focus on the case of SW generation and detection in a magnetic nanowire with in-plane magnetization
anisotropy as a simple example; however, the method can be applied to any kind of magnetic system. We show
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Figure 1. Schematic of the transmission matrix building method. Schematic showing how the input SW is
divided into several point-source waves. The red lines represent the location of the point-sources, while the
green line represents the location of the point-outputs. (a,b) The SWs that are observed at the point-sources
when point-source 5 and point-source 1 are excited, respectively. Point-source 5 is located at the middle of the
nanowire while point-source 1 is located at one edge of the nanowire. (c,d) The SWs that are observed at the
point-outputs when point-source 5 and point-source 1 are excited, respectively. Amplitude of the waves in the
image are exaggerated for easier visualization and understanding.

/X'

that the damping constant of each SW eigenmode has different value and they can be even 40% smaller than the
original material damping constant, which leads to a higher SW transmission. Due to the fact that the transmis-
sion enhancement comes from the engineering of the wave shape of the SW itself, this means that our method
is extendable to other branch of wave physics as it comes from the interference capabilities of waves which is
universal.

Methods

Micromagnetic simulation. The simulations were performed using Mumax3 micromagnetic simulator
to generate SWss in a nanowire with an in-plane magnetization. For simulations of nanowires with in-plane
magnetization, the material parameters were chosen to correspond to Nig Fe,, i.e. saturation magnetization
M, =860 x 10° A/m, exchange stiffness A,,=1.3 x 107']J/m, and Gilbert damping o= 0.02*. The nanowire had
alength of 2400 nm and a thickness of d = 5nm while the width, w, was varied from 30 nm to 500 nm. The simu-
lation cell size was 5nm X 5nm X 5nm, which is the typical cell size for this setup®. The magnetization direction
of the nanowire was directed along the length of the wire. The time step of the simulation was 1 ps to ensure
the accuracy of the following matrix calculation. Simulation results with lower cell size, thicker nanowires, and
smaller « are discussed in Supplementary Material III.

Results

Transmission matrix of spinwave. Here, the transmission of a SW from one point to the other is repre-
sented by an element of transmission matrix, which was constructed in the linear response regime and used to
determine the eigenvalues, the eigenmodes, as well as the eigen damping of the system. In general, the transmis-
sion matrix concepts have been widely used in many field of physics, including transport theory?®, electromag-
netic waves theory*’, color image processing, and so on. The transmission matrix connects the output SW with
the input SW in a simple form of Y = T - X, where Y, T, and X are the output, the transmission matrix, and the
input, respectively. In order to create the transmission matrix, first we assume that any input wave is a sum of
smaller waves created by ‘point-sources’ across the width of the nanowire (Fig. 1). This assumption holds as we are
working within the linear regime, where the superposition principle of waves holds true. Similarly, the output
wave at the observation point is also considered to be composed of smaller waves that go to ‘point-outputs’ To
illustrate our method, we first performed micromagnetic simulations with Mumax3*? on a nanowire with
in-plane magnetization.
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The transmission matrix building process is started by creating point-source excitations (Fig. 1). Each cell
across the center of the nanowire is designated as a point-source, where we proceeded to generate a SW in each of
them. The sources are labelled according to their position (e.g. Source 1, Source 2, ...., and Source N). Here, N
denotes the total number of point-sources. In our method, every simulation cell along the width of the nanowire
is regarded as a point-source, thus N= 10 for a nanowire with a width (w) of 50 nm while N=40 for a nanowire
with a width of 200 nm and so on. The point-sources were excited with a localized excitation field of
H,,, = H, sin2xft along the z direction, where the excitation frequency f was varied across the simulations while
the field amplitude was kept constant at H,= 100 mT. The individual point source excitations create different SWs
in the nanowire. Exciting point source 5 creates a relatively even SW (Fig. 1a) while exciting point source 1 creates
an uneven SW profile across the width of the nanowire (Fig. 1b). Note that even when the external field was only
excited at Source 1, in steady-state situation, SWs would be observed at all point-sources because all cells are
exchange coupled to each other. The different SW created at the point-sources invoke different SW reading at the
point-outputs (Fig. 1¢,d). Here we observed the output SW at a distance of /=250 nm away from the SW genera-
tor. The results show that the SWs at each of the point-sources and the point-outputs are not identical, which
makes the relations between them non-trivial. In general, any input X(#) SW can be expressed by:

X(t) = X\(t) + X,(8) + - X5(8) (1)

where X; represents a point excitation at Source i. However, (Fig. 1a,b) point-source excitation creates SW's at
other sources at steady state. Therefore, we can write each X; as a matrix:

X,(t)
X(t) = Xzf(t)
Xit) )

where X; represents the SW that is observed at point-source j due to a field excitation at point-source i. We can
then represent X(f) as a whole by augmenting the above matrix to an N x N matrix that gives the information of
how the point-sources respond to the field excitation H,,:

X)) - Xn(®)
X,‘(t) = : -
Xnit) -+ Xyn(®) (3)

Additionally, we can also define a susceptibility matrix x that relates X(#) and the excitation field as follows:

X,4(0) Hy(®)
! X X
X(t) = ij(t) 15 “\’ sz(t)
Xy(n) D aO (4)

where H; = (H, sin(27ft)), is the localized excitation field at i-th point-source. Similarly, we can represent the
output Y(J, t) in our nanowire as an N x N matrix that gives the information of how the input SW has changed as
it arrives on the output location (/):

Xit) - Xin()
xm=|: .
Xni(®) - Xy (@) (5)
In this way, each of the output waves Yi(J, t) and the input waves X;(t) are related by:
YL, 1) = T() - X;(8), (6)
and subsequently:
Y, ) = T() - X() )

where T(I) is a N x N square matrix that correlates the waves of the point-outputs and the waves of the
point-sources, with [ being the position of the output on the nanowire relative to the input. Note that both X
and Y are obtained from the oscillation of the magnetization The transmission matrix T can then be obtained by
performing:

T() = Y, 1) - (X(8) ®)

(An example of T is shown in Supplementary Material I). By knowing T, it is then possible for us to find the
SW eigenvalues and eigenmodes of the given nanowire at a given excitation frequency and location. Let us intro-
duce a diagonal matrix which consists of eigenvalues A = m;; = m,5;; here m; is i-th eigenvalue and §; is the

i%ij
Kronecker delta. We also introduce a matrix Q whose columns are g;: the i-th eigenmode. We then have the
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Figure 2. Magnetization configuration of the eigenmodes. (a) Plot showing the magnetization configuration

across the wire width of the first four SW eigenmodes. The wire width here is 140 nm and the applied field

strength is 100 mT with a frequency of 30 GHz. The magnetization configuration can be approximated by

g = A, sin M . (b—e) Visualization of the first four eigenmodes. The x and y axes are the physical axis of
! Weff,i

the nanowire while the vertical axis represents the magnetization oscillation of the SW.

well-known relations, T = QAQ™"and Tq, = mq, by definition of eigenvalues and eigenmodes. From the defini-
tion of the transmission matrix, the output of i-th eigenmode input (if X(t) = g;) is simply written as:

Y(, 1) = TOX(t) = T()q, = myq, )

The results show that there is simple multiplicity relation between the output and input: the output SW
has the same wave form of the input SW, only the magnitude and phase are changed by factor of m;. (see the
Supplementary Material IT and Supplementary Videos Eigen0-3.avi). In general, the magnitudes of eigenvalues
are smaller than 1, which represents the decay of the SW as it propagates within the medium.

Let us define the eigenvalue for a traveling distance of Al as m;. The output SW at distance Al for eigenmode
g; can be expressed by Y(Al) =m,q;. Subsequently, due to the multiplicity relation, the SW at any position I =nAl
can then be expressed by:

I
Y(I) = Y(nAl) = m/"q, = m;niq, (10)

Therefore, we can obtain the output SW at any n Al position by using a known eigenvalue for the correspond-
ing eigenmode.

As the eigenvalue represents the amplitude of the SW, for device application purpose, the most interesting
eigenmode is the one with the highest eigenvalue. By employing our method to the data obtained from the micro-
magnetic simulations, we find that the eigenmodes of the ferromagnetic nanowire have standing wave-like form
along the wire width with nodes and open boundary conditions (Fig. 2a). We number the eigenmodes by their
number of nodes, n,. Where n;=0, the eigenmode is almost a plane wave without node, which we denote as g,.
For the next eigenmode g, with n;=1, the eigenmode has one node at the center of the wire, while eigenmode g
has 3 nodes (Fig. 2b-e) and so on. The magnetization configuration of the eigenmodes can be approximated by:

(n; + D7y

q; = A sin
Wetr i

11)

where A; is the amplitude of the eigenmode, y is the position coordinate along the width of the nanowire while
wy ; is the effective width of the nanowire that is used to take into account the soft pinning of the magnetizations
at the edge of the nanowire®.

Eigen damping constant of spinwave. The linear decay in log-scale (y-axis) eigenvalues of the eigen-
modes as a function of the distance traveled across the length of the nanowire implies exponential decay of the
traveling SW (Fig. 3a). The propagating SW decays by dissipating its energy through damping process and the
amplitude of the SW at any distance is typically modeled by*:

Y(l) = g (12)
J— Z’YAL’)C kx
aMrf (13)
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Figure 3. Eigenvalues of the eigenmodes. (a) Graph showing the eigenvalues in natural logarithmic scale

of the first four modes as function of SW propagation distance in a nanowire with width of 140 nm. (b) The
eigenvalues of the first four eigenmodes for different nanowire width. The frequency of the applied field was

30 GHz. The circled data points (red circle) show the eigenvalue of the n;=2 eigenmode in the first instance it is
observed in the system.

where A is the SW attenuation length, + is the electron gyromagnetic ratio, k, is the wave vector of the SW along
the propagation direction, « is the damping constant. As aforementioned, the Gilbert damping constant « value
is usually treated as a fixed value for a given sample. However, our results show that each eigenmode has a differ-
ent decay trend, or attenuation length. By comparing Eqs (10) and (12), it is possible to define an eigen damping
constant a; to each of the eigenmodes:

k.. Inm; Ay Inmy;
o

kolnmg A Inmg (14)

where k,; and m; are the parallel wave vector along the wire direction and the eigenvalue of the i-th eigenmode
for a given f, respectively. This is the central results of the present study. Here, each of the eigen damping con-
stant «; correspond to an eigenmode whose properties such as k,; and m; are obtained from the micromagnetic
simulations and the transmission matrix calculations, which is different from the material-dependent damping
constant!*-13.

We calculated the corresponding eigenvalues of the first four eigenmodes for various nanowire width (Fig. 3b).
The eigenvalues here are calculated for /=200 nm away from the SW source. The results show that with wider
nanowire, more eigenmodes are accessible. The results also show that when a new mode is just made accessible, it
starts off with a lower eigenvalue than the preceding modes. For instance, at a nanowire width of 50 nm, the third
eigenmode is accessible but it has a very low eigenvalue of ~0.21 (Fig. 3b, red circle). However, as the nanowire
width is increased, the third eigenmode is able to be accommodated well and it reaches a higher eigenvalue as
compared to the 1* and the 2°¢ eigenmodes (when w>=90nm). It is observed to be a general trend and thus
we may claim that for wider wire, higher modes have higher eigenvalue which means smaller eigen damping
constant.

We calculated the simulation results for the dispersion relation of the eigenmodes for a nanowire with width
of 50 nm (Fig. 4a, symbols). The dispersion relation (Fig. 4a, solid line) for the various eigenmodes in the in-plane

magnetized nanowire can be approximated by the analytic formula®*!-6:
_ 1 2.2 y 2.2 2z
fkd = o \/(WM(A Ko F’%))(“}M(A Ko+ Fkx)) (15)
. k 2 (k +k )
kazzLNLF \|2k2 k217 - ) dk,
x W —+
J k2 + k)2 (6
FZZ o 1 +oc 2 1 — 6[ J( ]
k
Y T 2 2
(k> + k)t (17
ky cos(nw/z)sin(kyw/z) - K cos(kyw/z)sin(nw/z)
o =2 5
k" = (18)
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Figure 4. Dispersion relation of the eigenmodes. (a) Graph showing the dispersion relation of a 50 nm wide
NiFe nanowire for various frequencies of the excitation field. The symbols represent the data obtained via
micromagnetic simulations while the solid lines represent the analytical model. (b) The effective wire width,
Wep for the first four modes when the actual wire width, w (dashed black line), is 50 nm. Insets show the
magnetization configurations of the n;= 0 mode and the n,= 3 mode. The red solid line is a guide for the eye.

w
W = —(1 + sinc(kw))
2 (19)
where the term F,,»” and F}, account for dynamic demagnetization, A = (2 A/p,M,?)"? is the exchange length,

1)m
Wy = VM K*=k?+ x* and g = m The overall agreement is excellent when k, < 0.15 x 10°m™".

Weff,i

However, noticeable discrepancy can be seen for larger k,. This difference can be attributed to the fact that the
nanowire in our simulation was only 5 nm thick, which gave us only a single layer of simulation cells along the
nanowire thickness and thus reduced the accuracy of the micromagnetic simulations. Nevertheless, it did not
affect our method of obtaining the transmission matrix nor it affects the general conclusion of the work. We cal-
culated the effective width, Wegin of the first four eigenmodes for a nanowire with w=50nm (Fig. 4b) from the
dispersion relation data (Fig. 4a). The result shows that the first eigenmode, n,=0, experiences the weakest edge
pinning and thus perceives the largest w,; while the subsequent modes experiences stronger pinning and perceive
the effective width to be closer to the actual width of the nanowire.

We calculated the eigen damping constant of the eigenmodes of the NiFe nanowire with various widths
(Fig. 5a), which are obtained from the eigenvalues g; from the micromagnetic simulations with Eq. (14), while
keeping the frequency at f=30 GHz. In general, for each wire, higher eigenmodes have lower eigen damping
constant, i.e. o; (n;=2, w=>50nm) < Q (nj =1, w=>50nm), which leads to the higher amplitude as the SW travels
along the nanowire. However, the same eigenmode will have larger eigen damping constant in a wider wire, i.e.
a; (n;=2, w=500nm) > ; (n;= 2, w= 50 nm). The wavelength versus eigen damping constant graph reveals the
underlying relation between the eigenmodes and the eigen damping constants (Fig. 5b). The result shows that,
when they are excited with the same frequency, eigenmodes with the same wavelength will share the same eigen
damping constant, regardless of wire width and the mode number. Here, ), is the wavelength of the SW eigen-
mode along the propagation direction (A, = 27/k,), and they are obtained from Fourier transform of propagating
SW. The result also shows that the eigen damping constant continues to decrease as the wavelength is increased,
at the smallest value of around « & 0.012, which is equal to about 40% reduction as compared to the damping
constant of the material, which is 0.02. In this example, the initial damping value of 0.02 for the simulations was
chosen to shorten the overall calculation time for the transfer matrix. If we consider v = 0.012*7*% as the initial
damping value for the simulations, we found that the eigen damping constant for higher eigenmodes can be
reduced to a = 0.006 (Supplementary Material IIT).

The eigen damping constant graph for various applied frequency (Fig. 5¢) shows that increasing the applied
frequency gives the same response as increasing the width of the nanowire, whereby more modes are allowed in
the nanowire. In addition, increasing the applied frequency leads to a shift in the eigen damping vs. wavelength
curve (Fig. 5d), which can be attributed to the inverse relationship between the wave vector and the applied fre-
quency in Eq. (14).

Discussion

The underlying physics of our finding, the eigen damping constant, is the interference of SW. For instance, a wave
generated from a point-source in an infinite plane shall propagate without any interaction from any boundary.
However, the wave from a point-source in a nanowire (or any nanostructure) shall encounter the boundaries of
the wire and be reflected from the boundaries. Therefore, the interference between the original and the reflected
waves is inevitable at the finite structure. Next, let us think about a plane wave excitation, which mathematically
is a sum of point-source excitations in a nanowire. Most SW studies employed plane wave because it is the eas-
iest way to generate a SW with a simple current wire. However, our results have shown that it is not the plane
wave that has the highest transmission. As aforementioned, the higher SW eigenmodes keep the wave shape
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Figure 5. Eigen damping constants of the eigenmodes. (a) Graph showing the eigen damping constant for
the various eigenmodes of nanowires with various widths. The applied frequency here is 30 GHz. The right
axis shows the ratio between the eigen damping and the original damping constant of the material, a/cx. (b)
Graph showing the eigen damping as function of the wavelength of the SW along the propagation direction
for nanowires with various widths. (c) Graph showing the eigen damping as a function of the eigenmodes for
various applied excitation frequency. (d) Graph showing the eigen damping as a function of the wavelength of
the eigenmodes various applied excitation frequency. The wire width in (c,d) is 140 nm.

during traveling and they have higher eigenvalue, i.e. transmission rates (see Supplementary Material II and
Supplementary Videos Eigen0-3.avi). It implies that the scattering at the edges are more effectively suppressed
with higher eigenmode due to its complex wave shape, which leads to the lower damping constant. In addition, in
Supplementary Material IV, we have also included a basic design of the SW injector that will be able to inject the
eigenmodes that are shown in this work.

In conclusion, we have shown that it is possible to find the SW eigenmodes and eigen damping constants of
any patterned nanostructure by developing a transmission matrix. The transmission matrix contains the informa-
tion of how the SW's propagated at each point within the nanowire, and it is able to give us the eigenvalue of the
eigenmodes, i.e. the transmission efficiency of the SW eigenmodes at any point along the length of the nanostruc-
ture. By employing our method to a nanowire with in-plane magnetization, we show that higher spinwave eigen-
modes in general have higher eigenvalues, which means that they decay slower as they travel along the length of
the nanowire. This also means that it is possible for us to assign unique damping constant to eigenmodes, with the
higher modes having lower damping constant. Most importantly, the method that is presented in our work does
not limit itself to the analysis of waves in ferromagnetic material, as we are mostly concerned with the interference
capabilities of wave which is a trait shared by all kinds of wave in nature. Therefore, our method can be applied to
any field of research who is concerned with either maximizing or minimizing the transfer of waves, such as the
case of optical cloaking in optics*** and even seismic cloaking in geology®*2.
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