1,871 research outputs found

    PENSIONERS AND FOOD INTAKE PATTERNS IN A TRANSITION ECONOMY

    Get PDF
    Using nationwide food consumption survey data collected in Bulgaria in 1997, this study examines how food intake patterns of the unemployed and pensioners differ from patterns of the employed. During transition, the unemployed and pensioners are particularly vulnerable to nutritional deficiencies and chronic diseases resulting from unbalanced and unhealthy diets as well as food shortage.transition, social welfare policy, food intake pattern, Consumer/Household Economics, Food Consumption/Nutrition/Food Safety, Food Security and Poverty,

    Effects of resistance training on classic and specific bioelectrical impedance vector analysis in elderly women

    Get PDF
    Raw bioelectrical impedance analysis (BIA) data [resistance (R); reactance (Xc)] through bioelectrical impedance vector analysis (BIVA) and phase angle (PhA) have been used to evaluate cellular function and hydration status. The purpose of this investigation was to examine the effects of resistance training (RT) on classic and specific BIVA in elderly women. Twenty women (mean ± SD; age: 71.9 ± 6.9 years; BMI: 24.5 ± 3.0 kg m(-2)) completed a 6-month RT program. Whole-body, single-frequency BIA, body geometry, and leg strength (5RM) measures were completed at baseline (t0), 3 months (t3), and 6 months (t6). The mean impedance vector displacements were compared using Hotelling's T(2) test to evaluate changes in R and Xc relative to height (R/ht; Xc/ht) or body volume (Rsp; Xcsp) estimated from the arms, legs, and trunk. 5RM, PhA, and BIVA variables were compared using ANOVA. PhA improved at t6 (p < 0.01), while 5RM improved at t3 and t6 (p < 0.01). Using classic BIVA, 6 months (T(2) = 31.6; p < 0.01), but not 3 months of RT (T(2) = 4.5; p = 0.20), resulted in significant vector migration. Using specific BIVA, 6 months (T(2) = 24.4; p < 0.01), but not 3 months of RT (T(2) = 5.5; p = 0.10), also resulted in significant vector migration. 5RM was correlated to both PhA (r = 0.48-56) and Xcsp (r = 0.45-53) at all time points. Vector displacements were likely the result of improved cellular integrity (Xcsp) and cellular health (PhA)

    Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women

    Get PDF
    This is the publisher's version, also found at http://www.jissn.com/content/4/1/20The purpose of this study was to examine the effects of 5 days of Creatine (Cr) loading on the electromyographic fatigue threshold (EMGFT) in college-aged women. Fifteen healthy college-aged women (mean ± SD = 22.3 ± 1.7 yrs) volunteered to participate in this double-blind, placebocontrolled study and were randomly placed into either placebo (PL – 10 g of flavored dextrose powder; n = 8) or creatine (Cr – 5 g di-creatine citrate plus 10 g of flavored dextrose powder; n = 7; Creatine Edge, FSI Nutrition) loading groups. Each group ingested one packet 4 times per day (total of 20 g/day) for 5 days. Prior to and following supplementation, each subject performed a discontinuous incremental cycle ergometer test to determine their EMGFT value, using bipolar surface electrodes placed on the longitudinal axis of the right vastus lateralis. Subjects completed a total of four, 60 second work bouts (ranging from 100–350 W). The EMG amplitude was averaged over 10 second intervals and plotted over the 60 second work bout. The resulting slopes from each successive work bouts were used to calculate EMGFT. A two-way ANOVA (group [Cr vs. PL] × time [pre vs. post]) resulted in a significant (p = 0.031) interaction. Furthermore, a dependent samples t-test showed a 14.5% ± 3.5% increase in EMGFT from pre- to post-supplementation with Cr (p = 0.009), but no change for the PL treatment (-2.2 ± 5.8%; p = 0.732). In addition, a significant increase (1.0 ± 0.34 kg; p = 0.049) in weight (kg) was observed in the Cr group but no change for PL (-0.2 kg ± 0.2 kg). These findings suggest that 5 days of Cr loading in women may be an effective strategy for delaying the onset of neuromuscular fatigue during cycle ergometry

    Minimal nutrition intervention with high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement improves body composition and exercise benefits in overweight adults: A randomized controlled trial

    Get PDF
    Background: Exercise and high-protein/reduced-carbohydrate and -fat diets have each been shown separately, or in combination with an energy-restricted diet to improve body composition and health in sedentary, overweight (BMI > 25) adults. The current study, instead, examined the physiological response to 10 weeks of combined aerobic and resistance exercise (EX) versus exercise + minimal nutrition intervention designed to alter the macronutrient profile, in the absence of energy restriction, using a commercially available high-protein/low-carbohydrate and low-fat, nutrient-dense food supplement (EXFS); versus control (CON). Methods: Thirty-eight previously sedentary, overweight subjects (female = 19; male = 19) were randomly assigned to either CON (n = 10), EX (n = 14) or EXFS (n = 14). EX and EXFS participated in supervised resistance and endurance training (2× and 3×/wk, respectively); EXFS consumed 1 shake/d (weeks 1 and 2) and 2 shakes/d (weeks 3–10). Results: EXFS significantly decreased total energy, carbohydrate and fat intake (-14.4%, -27.2% and -26.7%, respectively; p < 0.017), and increased protein and fiber intake (+52.1% and +21.2%, respectively; p < 0.017). EX and EXFS significantly decreased fat mass (-4.6% and -9.3%, respectively; p < 0.017), with a greater (p < 0.05) decrease in EXFS than EX and CON. Muscle mass increase only reached significance in EXFS (+2.3%; p < 0.017), which was greater (p < 0.05) than CON but not EX (+1.1%). Relative VO2max improved in both exercise groups (EX = +5.0% and EXFS = +7.9%; p < 0.017); however, only EXFS significantly improved absolute VO2max (+6.2%; p = 0.001). Time-to-exhaustion during treadmill testing increased in EX (+9.8%) but was significantly less (p < 0.05) than in EXFS (+21.2%). Total cholesterol and LDL decreased only in the EXFS (-12.0% and -13.3%, respectively; p < 0.017). Total cholesterol-to-HDL ratio, however, decreased significantly (p < 0.017) in both exercise groups. Conclusion: Absent energy restriction or other dietary controls, provision of a high-protein/low-carbohydrate and -fat, nutrient-dense food supplement significantly, 1) modified ad libitum macronutrient and energy intake (behavior effect), 2) improved physiological adaptations to exercise (metabolic advantage), and 3) reduced the variability of individual responses for fat mass, muscle mass and time-to-exhaustion – all three variables improving in 100% of EXFS subjects

    Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach

    Get PDF
    This is the publisher's version, also available electronically from http://www.jissn.com/content/4/1/16.Background Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age women compared to the Siri three-compartment model (3C). Methods Thirty Caucasian women (21.1 ± 1.5 yrs; 164.8 ± 4.7 cm; 61.2 ± 6.8 kg) had their %fat estimated by BIA using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), NIR (Futrex® 6100/XL), a quadratic (SF3JPW) and linear (SF3WB) skinfold equation, air-displacement plethysmography (BP), and hydrostatic weighing (HW). Results All methods produced acceptable total error (TE) values compared to the 3C model. Both laboratory methods produced similar TE values (HW, TE = 2.4%fat; BP, TE = 2.3%fat) when compared to the 3C model, though a significant constant error (CE) was detected for HW (1.5%fat, p ≤ 0.006). The field methods produced acceptable TE values ranging from 1.8 – 3.8 %fat. BIA-AK (TE = 1.8%fat) yielded the lowest TE among the field methods, while BIA-Lohman (TE = 2.1%fat) and NIR (TE = 2.7%fat) produced lower TE values than both skinfold equations (TE > 2.7%fat) compared to the 3C model. Additionally, the SF3JPW %fat estimation equation resulted in a significant CE (2.6%fat, p ≤ 0.007). Conclusion Data suggest that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian women. When the use of a laboratory method is not feasible, NIR, BIA-AK, BIA-Lohman, SF3JPW, and SF3WB are acceptable field methods to estimate %fat in this population

    Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial

    Get PDF
    Background: Intermittent bouts of high-intensity exercise result in diminished stores of energy substrates, followed by an accumulation of metabolites, promoting chronic physiological adaptations. In addition, β-alanine has been accepted has an effective physiological hydrogen ion (H+) buffer. Concurrent high-intensity interval training (HIIT) and β-alanine supplementation may result in greater adaptations than HIIT alone. The purpose of the current study was to evaluate the effects of combining β-alanine supplementation with high-intensity interval training (HIIT) on endurance performance and aerobic metabolism in recreationally active college-aged men. Methods: Forty-six men (Age: 22.2 ± 2.7 yrs; Ht: 178.1 ± 7.4 cm; Wt: 78.7 ± 11.9; VO2peak: 3.3 ± 0.59 l·min-1) were assessed for peak O2 utilization (VO2peak), time to fatigue (VO2TTE), ventilatory threshold (VT), and total work done at 110% of pre-training VO2peak (TWD). In a double-blind fashion, all subjects were randomly assigned into one either a placebo (PL – 16.5 g dextrose powder per packet; n = 18) or β-alanine (BA – 1.5 g β-alanine plus 15 g dextrose powder per packet; n = 18) group. All subjects supplemented four times per day (total of 6 g/day) for the first 21-days, followed by two times per day (3 g/day) for the subsequent 21 days, and engaged in a total of six weeks of HIIT training consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio. Results: Significant improvements in VO2peak, VO2TTE, and TWD after three weeks of training were displayed (p \u3c 0.05). Increases in VO2peak, VO2TTE, TWD and lean body mass were only significant for the BA group after the second three weeks of training. Conclusion: The use of HIIT to induce significant aerobic improvements is effective and efficient. Chronic BA supplementation may further enhance HIIT, improving endurance performance and lean body mass
    corecore