4,901 research outputs found
Tissue-specific Expression of Distinct Spectrin and Ankyrin Transcripts in Erythroid and Nonerythroid Cells
cDNA probes for three components of the erythroid membrane skeleton, α spectrin, β spectrin, and ankyrin, were obtained by using monospecific antibodies to screen a λgt11 expression vector library containing cDNA prepared from chicken erythroid poly(A)^+ RNA. Each cDNA appears to hybridize to one gene type in the chicken genome. Qualitatively distinct RNA species in myogenic and erythroid cells are detected for β spectrin and ankyrin, while α spectrin exists as a single species of transcript in all tissues examined. This tissue-specific expression of RNAs is regulated quantitatively during myogenesis in vitro, since all three accumulate only upon myoblast fusion. Furthermore, RNAs for two of the three genes do not accumulate to detectable levels in chicken embryo fibroblasts, demonstrating that their accumulation can be noncoordinate. These observations suggest that independent gene regulation and tissue-specific production of heterogeneous transcripts from the β spectrin and ankyrin genes underlie the formation of distinct membrane skeletons in erythroid and muscle cells
Dissipation in the superconducting state of kappa-(BEDT-TTF)2Cu(NCS)2
We have studied the interlayer resistivity of the prototypical
quasi-two-dimensional organic superconductor -(BEDT-TTF)Cu(NCS)
as a function of temperature, current and magnetic field, within the
superconducting state. We find a region of non-zero resistivity whose
properties are strongly dependent on magnetic field and current density. There
is a crossover to non-Ohmic conduction below a temperature that coincides with
the 2D vortex solid -- vortex liquid transition. We interpret the behaviour in
terms of a model of current- and thermally-driven phase slips caused by the
diffusive motion of the pancake vortices which are weakly-coupled in adjacent
layers, giving rise to a finite interlayer resistance.Comment: Four pages, three figure
Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems
At small layer separations, the ground state of a nu=1 bilayer quantum Hall
system exhibits spontaneous interlayer phase coherence and has a
charged-excitation gap E_g. The evolution of this state with increasing layer
separation d has been a matter of controversy. In this letter we report on
small system exact diagonalization calculations which suggest that a single
phase transition, likely of first order, separates coherent incompressible (E_g
>0) states with strong interlayer correlations from incoherent compressible
states with weak interlayer correlations. We find a dependence of the phase
boundary on d and interlayer tunneling amplitude that is in very good agreement
with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let
Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors
The maximum oscillation frequency (fmax) quantifies the practical upper bound
for useful circuit operation. We report here an fmax of 70 GHz in transistors
using epitaxial graphene grown on the C-face of SiC. This is a significant
improvement over Si-face epitaxial graphene used in the prior high frequency
transistor studies, exemplifying the superior electronics potential of C-face
epitaxial graphene. Careful transistor design using a high {\kappa} dielectric
T-gate and self-aligned contacts, further contributed to the record-breaking
fmax
GaN resistive hydrogen gas sensors
GaN epilayers grown by organometallic vapor phase epitaxy have been used to fabricate resistivegas sensors with a pair of planar ohmic contacts. Detectible sensitivity to H2 gas for a wide range of gas mixtures in an Ar ambient has been realized; the lowest concentration tested is ∼0.1% H2 (in Ar), well below the lower combustion limit in air. No saturation of the signal is observed up to 100% H2 flow. Real-time response to H2 shows a clear and sharp response with no memory effects during the ramping cycles of H2 concentration. The change in current at a fixed voltage to hydrogen was found to change with sensor geometry. This appears to be consistent with a surface-adsorption-induced change of conductivity; a detailed picture of the gas sensing mechanism requires further systematic studies
Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost–Effective Medium-Throughput Screening of Genes that Promote Neurite Outgrowth
Following an injury, central nervous system (CNS) neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterized by their failure to express key regeneration-associated genes (RAGs) and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimized a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons (CGNs) cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth inhibitory chondroitin sulfate proteoglycans. Optimal electroporation parameters resulted in 28% transfection efficiency and 51% viability for postnatal rat CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates
A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability
All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection due to stalling of the cellular 5′-to-3′ exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation
Recommended from our members
E2F and p53 Induce Apoptosis Independently during Drosophila Development but Intersect in the Context of DNA Damage
In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs) by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1
- …