1,159 research outputs found

    Turkish Delight – Does Turkey’s accession to the EU bring economic benefits?

    Get PDF
    We explore the economic implications of the possible Turkish accession to the European Union. We focus on three main changes associated with Turkish membership: (i) accession to the internal European Market; (ii) institutional reforms in Turkey triggered by EU-membership; and (iii) migration in response to the free movement of workers. Overall, the macroeconomic implications for EU countries are small but positive. European exports increase by around 20 percent. Turkey experiences larger economic gains than the EU: consumption per capita is estimated to rise by about 4 percent as a result of accession to the internal market and free movement of labour. If Turkey would succeed in reforming its domestic institutions in response to EU-membership, consumption per capita in Turkey could raise by an additional 9 percent. These benefits would spill over to the EU.Turkey, regional economic integration, general equilibrium model, gravity equations, institutional reform, migration

    Characterising exo-ringsystems around fast-rotating stars using the Rossiter-McLaughlin effect

    Get PDF
    Planetary rings produce a distinct shape distortion in transit lightcurves. However, to accurately model such lightcurves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky projected angle of the ring system. For slow rotating stars, this mainly impacts the amplitude of the induced velocity shift, however, for fast rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modeling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW\delta W) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ\gamma) relative to the stellar rotation velocity (vv sinii, i.e. δW/R∗≳v\delta W / R_* \gtrsim vsinii/γ\gamma). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.Comment: Accepted for publication in MNRA

    The GROUSE project III: Ks-band observations of the thermal emission from WASP-33b

    Get PDF
    In recent years, day-side emission from about a dozen hot Jupiters has been detected through ground-based secondary eclipse observations in the near-infrared. These near-infrared observations are vital for determining the energy budgets of hot Jupiters, since they probe the planet's spectral energy distribution near its peak. The aim of this work is to measure the Ks-band secondary eclipse depth of WASP-33b, the first planet discovered to transit an A-type star. This planet receives the highest level of irradiation of all transiting planets discovered to date. Furthermore, its host-star shows pulsations and is classified as a low-amplitude delta-Scuti. As part of our GROUnd-based Secondary Eclipse (GROUSE) project we have obtained observations of two separate secondary eclipses of WASP-33b in the Ks-band using the LIRIS instrument on the William Herschel Telescope (WHT). The telescope was significantly defocused to avoid saturation of the detector for this bright star (K~7.5). To increase the stability and the cadence of the observations, they were performed in staring mode. We collected a total of 5100 and 6900 frames for the first and the second night respectively, both with an average cadence of 3.3 seconds. On the second night the eclipse is detected at the 12-sigma level, with a measured eclipse depth of 0.244+0.027-0.020 %. This eclipse depth corresponds to a brightness temperature of 3270+115-160 K. The measured brightness temperature on the second night is consistent with the expected equilibrium temperature for a planet with a very low albedo and a rapid re-radiation of the absorbed stellar light. For the other night the short out-of-eclipse baseline prevents good corrections for the stellar pulsations and systematic effects, which makes this dataset unreliable for eclipse depth measurements. This demonstrates the need of getting a sufficient out-of-eclipse baseline.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns

    Get PDF
    We report a 4.8 sigma detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1 sigma with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Arbeidsaanbodelasticiteit en beleid

    Get PDF
    De invloed van beleidshervormingen op de werkgelegenheid is in belangrijke mate afhankelijk van de loonelasticiteit van het arbeidsaanbod. Ondanks de enorme hoeveelheid empirische studies is de hoogte van deze elasticiteit nog altijd onderwerp van discussie

    Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    Full text link
    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we recently proposed and demonstrated, consists of driving two transversely-coupled quantum bits (qubits) with a driving field that is resonant with one of the two qubits. For specific relative amplitudes and phases of the driving field felt by the two qubits, one of the two transitions in the degenerate pair is darkened, or in other words, becomes forbidden by effective selection rules. At these driving conditions, the evolution of the two-qubit state realizes a CNOT gate. The gate speed is found to be limited only by the coupling energy J, which is the fundamental speed limit for any entangling gate. Numerical simulations show that at gate speeds corresponding to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and increases further for lower gate speeds. In addition, the effect of higher-lying energy levels and weak anharmonicity is studied, as well as the scalability of the method to systems of multiple qubits. We conclude that in all these respects this method is competitive with existing schemes for creating entanglement, with the added advantages of being applicable for qubits operating at fixed frequencies (either by design or for exploitation of coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure

    Europees minimum voor vennootschapsbelasting is goede zaak

    Get PDF
    Het voorstel voor een Europees minimumtarief voor de vennootschapsbelasting is verstandig. Enerzijds voorkomt een minimumtarief een al te scherpe race naar de bodem. Anderzijds blijft de mogelijkheid voor belastingsconcurrentie bestaan

    What explains the Variation in Estimates of Labour Supply Elasticities?

    Get PDF
    This paper performs a meta-analysis of empirical estimates of uncompensated labour supply elasticities. We find that much of the variation in elasticities can be explained by the variation in gender, participation rates, and country fixed effects. Country differences appear to be small though. There is no systematic impact of the model specification or marital status on reported elasticities. The decision to participate is more responsive than is the decision regarding hours worked. Even at the intensive margin, we find that the elasticity for women exceeds that for men. For men and women in the Netherlands, we predict an uncompensated labour supply elasticity of 0.1 (or 0.2 if an alternative specification is preferred) and 0.5, respectively. These values are robust for alternative samples and specifications of the meta regression
    • …
    corecore